Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 27,
  • Issue 3,
  • pp. 183-190
  • (2019)

Applicability of near infrared spectroscopy for real-time soil detection during automatic dishwashing

Not Accessible

Your library or personal account may give you access

Abstract

The purpose of this study was to utilize NIR spectrometry to develop a novel method to detect and determine concentrations of different soils in dishwashing liquor during automatic dishwashing in real-time. If it is possible to differentiate between soils, this could be an opportunity to react specifically to them (e.g. by increasing the water temperature if fat components are not sufficiently emulsifying). The possibility of an automatic adaptation of the dishwashing process to different soils and soil levels could lead to a shorter, more environmentally friendly and cost-reducing process. In a first approach, an emulsion containing three soil types (oatmeal, egg-yolk and butterfat), water and detergent were used to develop NIR spectrometry prediction models. Transmittance spectra obtained with an Fourier transform near infrared (FT-NIR) spectrometer of testing standards of 76 automatic dishwashing cycles with seven samples per cycle were taken at various times during the main washing process for calibration (and validation) of the NIR spectrometry prediction models. The spectra were pretreated to develop NIR spectrometry prediction models for each type of soil using the partial least squares regression method with cross-validation. Overall, the coefficients of determination in cross-validation are R2 > 0.92 for all NIR spectrometry prediction models developed. The results of the prediction models developed show that NIR spectrometry technology is a promising method to predict different levels of predefined soils in dishwashing liquor. The NIR spectrometry models were applied to an automatic dishwashing process with soiled dishes instead of emulsions containing soils to test their applicability. The resulting dishwashing process could be tracked in real-time by the dissolved soil concentrations, observed in the dishwashing liquor.

© 2019 The Author(s)

PDF Article
More Like This
Accurate and rapid detection of soil and fertilizer properties based on visible/near-infrared spectroscopy

Zhidan Lin, Rujing Wang, Yubing Wang, Liusan Wang, Cuiping Lu, Yang Liu, Zhengyong Zhang, and Likai Zhu
Appl. Opt. 57(18) D69-D73 (2018)

Application of laser-induced breakdown spectroscopy for real-time detection of contamination particles during the manufacturing process

Haebum Lee, Hyunok Maeng, Kyoungtae Kim, Gibaek Kim, and Kihong Park
Appl. Opt. 57(12) 3288-3292 (2018)

Application of a mobile laser-induced breakdown spectroscopy system to detect heavy metal elements in soil

Deshuo Meng, Nanjing Zhao, Mingjun Ma, Li Fang, Yanhong Gu, Yao Jia, Jianguo Liu, and Wenqing Liu
Appl. Opt. 56(18) 5204-5210 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.