Abstract

Fitness is known to have beneficial effects on brain anatomy and function. However, the understanding of mechanisms underlying immediate and long-term neurophysiological changes due to exercise is currently incomplete due to the lack of tools to investigate brain function during physical activity. In this study, we used time-domain near infrared spectroscopy (TD-NIRS) to quantify and discriminate extra-cerebral and cerebral hemoglobin concentrations and oxygen saturation (SO2) in young adults at rest and during incremental intensity exercise. In extra-cerebral tissue, an increase in deoxy-hemoglobin (HbR) and a decrease in SO2 were observed while only cerebral HbR increased at high intensity exercise. Results in extra-cerebral tissue are consistent with thermoregulatory mechanisms to dissipate excess heat through skin blood flow, while cerebral changes are in agreement with cerebral blood flow (CBF) redistribution mechanisms to meet oxygen demand in activated regions during exercise. No significant difference was observed in oxy- (HbO2) and total hemoglobin (HbT). In addition HbO2, HbR and HbT increased with subject’s peak power output (equivalent to the maximum oxygen volume consumption; VO2 peak) supporting previous observations of increased total mass of red blood cells in trained individuals. Our results also revealed known gender differences with higher hemoglobin in men. Our approach in quantifying both extra-cerebral and cerebral absolute hemoglobin during exercise may help to better interpret past and future continuous-wave NIRS studies that are prone to extra-cerebral contamination and allow a better understanding of acute cerebral changes due to physical exercise.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cerebral time domain-NIRS: reproducibility analysis, optical properties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects

Giacomo Giacalone, Marta Zanoletti, Davide Contini, Rebecca Re, Lorenzo Spinelli, Luisa Roveri, and Alessandro Torricelli
Biomed. Opt. Express 8(11) 4987-5000 (2017)

RGB camera-based imaging of cerebral tissue oxygen saturation, hemoglobin concentration, and hemodynamic spontaneous low-frequency oscillations in rat brain following induction of cortical spreading depression

Afrina Mustari, Naoki Nakamura, Satoko Kawauchi, Shunichi Sato, Manabu Sato, and Izumi Nishidate
Biomed. Opt. Express 9(3) 933-951 (2018)

Quantitative measurements of cerebral blood flow with near-infrared spectroscopy

Thao Pham, Kristen Tgavalekos, Angelo Sassaroli, Giles Blaney, and Sergio Fantini
Biomed. Opt. Express 10(4) 2117-2134 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
    [PubMed]
  2. N. J. Kirk-Sanchez and E. L. McGough, “Physical exercise and cognitive performance in the elderly: current perspectives,” Clin. Interv. Aging 9, 51–62 (2014).
    [PubMed]
  3. L. Bherer, K. I. Erickson, and T. Liu-Ambrose, “A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults,” J. Aging. Res. 2013, 1–8 (2013).
  4. K. I. Erickson, R. L. Leckie, and A. M. Weinstein, “Physical activity, fitness, and gray matter volume,” Neurobiol. Aging 35Suppl 2, S20–S28 (2014).
    [Crossref] [PubMed]
  5. A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
    [Crossref]
  6. K. Ide and N. H. Secher, “Cerebral blood flow and metabolism during exercise,” Prog. Neurobiol. 61, 397–414 (2000).
    [Crossref] [PubMed]
  7. M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
    [PubMed]
  8. G. Hellström, W. Fischer-Colbrie, N. G. Wahlgren, and T. Jogestrand, “Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise,” J. Appl. Physiol. 81, 413–418 (1996).
    [PubMed]
  9. V. Bolduc, N. Thorin-Trescases, and E. Thorin, “Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging,” Am. J. Physiol. Heart Circ. Physiol. 305, H620–H633 (2013).
    [Crossref] [PubMed]
  10. I. Heinonen, K. K. Kalliokoski, J. C. Hannukainen, D. J. Duncker, P. Nuutila, and J. Knuuti, “Organ-specific physiological responses to acute physical exercise and long-term training in humans,” Physiology (Bethesda) 29, 421–436 (2014).
  11. J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
    [Crossref]
  12. T. D. Noakes, “Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal,” Med. Sci. Sports Exerc. 30, 1381–1398 (1998).
    [PubMed]
  13. H. Boecker and A. Drzezga, “A perspective on the future role of brain pet imaging in exercise science,” Neuroimage 131, 73–80 (2016).
    [Crossref]
  14. C. R. Rooks, N. J. Thom, K. K. McCully, and R. K. Dishman, “Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review,” Prog. Neurobiol. 92, 134–150 (2010).
    [Crossref] [PubMed]
  15. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
    [Crossref] [PubMed]
  16. A. W. Subudhi, A. C. Dimmen, and R. C. Roach, “Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise,” J. Appl. Physiol. 103, 177–183 (2007).
    [Crossref] [PubMed]
  17. T. Rupp, R. Thomas, S. Perrey, and P. Stephane, “Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise,” Eur. J. Appl. Physiol. 102, 153–163 (2008).
  18. C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
    [Crossref] [PubMed]
  19. K. Oussaidene, F. Prieur, S. Tagougui, A. Abaidia, R. Matran, and P. Mucci, “Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects,” Respir. Physiol. Neurobiol. 205, 53–60 (2015).
    [Crossref]
  20. R. Jung, M. Moser, S. Baucsek, S. Dern, and S. Schneider, “Activation patterns of different brain areas during incremental exercise measured by near-infrared spectroscopy,” Exp. Brain Res. 233, 1175–1180 (2015).
    [Crossref] [PubMed]
  21. S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).
  22. K. Shibuya, J. Tanaka, N. Kuboyama, S. Murai, and T. Ogaki, “Cerebral cortex activity during supramaximal exhaustive exercise,” J. Sports Med. Phys. Fitness 44, 215–219 (2004).
    [PubMed]
  23. K.-I. Shibuya, J. Tanaka, N. Kuboyama, and T. Ogaki, “Cerebral oxygenation during intermittent supramaximal exercise,” Respir. Physiol. Neurobiol. 140, 165–172 (2004).
    [Crossref] [PubMed]
  24. G. Ganesan, S. Y. Leu, A. Cerussi, B. Tromberg, D. M. Cooper, and P. Galassetti, “Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy,” Pediatr. Exerc. Sci. 28, 275–285 (2016).
    [Crossref]
  25. P. Ekkekakis, “Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy,” J. Sport. Exerc. Psychol. 31, 505–553 (2009).
    [Crossref] [PubMed]
  26. T. Miyazawa, M. Horiuchi, H. Komine, J. Sugawara, P. J. Fadel, and S. Ogoh, “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113, 2841–2848 (2013).
    [Crossref] [PubMed]
  27. L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56, 1362–1371 (2011).
    [Crossref] [PubMed]
  28. L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
    [Crossref]
  29. R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” J. Opt. Soc. Am. A 22, 1874–1882 (2005).
    [Crossref]
  30. A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
    [Crossref] [PubMed]
  31. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85Pt 1, 28–50 (2014).
    [Crossref]
  32. A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26, 1963–1965 (2001).
    [Crossref]
  33. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43, 3037–3047 (2004).
    [Crossref] [PubMed]
  34. L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13, 054019 (2008).
    [Crossref] [PubMed]
  35. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
    [Crossref] [PubMed]
  36. C. T. Davies and A. J. Sargeant, “Circadian variation in physiological responses to exercise on a stationary bicycle ergometer,” Br. J. Ind. Med. 32, 110–114 (1975).
    [PubMed]
  37. P.-O. Leclerc, “Développement d’un système de spectroscopie infrarouge résolue temporellement pour la quantification des concentrations d’hémoglobine cérébrale,” Master’s thesis, Institut de Génie Biomédical, Université de Montréal (2011).
  38. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23Suppl 1, S275–S288 (2004).
    [Crossref] [PubMed]
  39. M. Diop and K. St Lawrence, “Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight,” Biomed. Opt. Express 4, 447–459 (2013).
    [Crossref] [PubMed]
  40. O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
    [Crossref] [PubMed]
  41. V. Labelle, L. Bosquet, S. Mekary, and L. Bherer, “Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level,” Brain Cogn. 81, 10–17 (2013).
    [Crossref]
  42. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnires, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998).
    [Crossref]
  43. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
    [Crossref] [PubMed]
  44. C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
    [Crossref] [PubMed]
  45. R. Wolthuis, M. van Aken, K. Fountas, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Determination of water concentration in brain tissue by Raman spectroscopy,” Anal. Chem. 73, 3915–3920 (2001).
    [Crossref] [PubMed]
  46. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
    [Crossref] [PubMed]
  47. K. Sato, S. Ogoh, A. Hirasawa, A. Oue, and T. Sadamoto, “The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans,” J. Physiol. (Lond.) 589, 2847–2856 (2011).
    [Crossref]
  48. D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46, 1717–1725 (2007).
    [Crossref] [PubMed]
  49. E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
    [Crossref]
  50. O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49, 6324–6332 (2010).
    [Crossref] [PubMed]
  51. L. Li, S. Mac-Mary, J.-M. Sainthillier, S. Nouveau, O. de Lacharriere, and P. Humbert, “Age-Related Changes of the Cutaneous Microcirculation in vivo,” Gerontology 52, 142–153 (2006).
    [Crossref] [PubMed]
  52. N. Uranova, I. Zimina, O. Vikhreva, V. Rachmanova, A. Klintsova, and D. Orlovskaya, “Reduced Capillary Density in the Prefrontal Cortex in Schizophrenia,” AJMSM 1, 45–51 (2013).
    [Crossref]
  53. A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
    [Crossref] [PubMed]
  54. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
    [Crossref] [PubMed]
  55. M. Dehaes, L. Gagnon, F. Lesage, M. Pélégrini-Issac, A. Vignaud, R. Valabrègue, R. Grebe, F. Wallois, and H. Benali, “Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging: a simulation study,” Biomed. Opt. Express 2, 680–695 (2011).
    [Crossref] [PubMed]
  56. L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
    [Crossref]
  57. B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS ONE 8, e64095 (2013).
    [Crossref] [PubMed]
  58. H. Mairbäurl, “Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells,” Front. Physiol. 4, 332 (2013).
    [Crossref] [PubMed]
  59. W. Schmidt and N. Prommer, “Impact of alterations in total hemoglobin mass on VO 2max,” Exerc. Sport Sci. Rev. 38, 68–75 (2010).
    [Crossref] [PubMed]
  60. T. Li, Q. Luo, and H. Gong, “Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy,” Behav. Brain Res. 209, 148–153 (2010).
    [Crossref] [PubMed]
  61. M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
    [Crossref] [PubMed]
  62. N. Jausovec and K. Jausovec, “Do women see things differently than men do?”; Neuroimage 45, 198–207 (2009).
    [Crossref]
  63. W. G. Murphy, “The sex difference in haemoglobin levels in adults — Mechanisms, causes, and consequences,” Blood Rev. 28, 41–47 (2014).
    [Crossref] [PubMed]
  64. C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
    [Crossref] [PubMed]
  65. H. N. Mayrovitz and M. B. Regan, “Gender differences in facial skin blood perfusion during basal and heated conditions determined by laser Doppler flowmetry,” Microvasc. Res. 45, 211–218 (1993).
    [Crossref] [PubMed]
  66. H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
    [Crossref]
  67. K. Ide, F. Pott, J. J. Van Lieshout, and N. H. Secher, “Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass,” Acta Physiol. Scand. 162, 13–20 (1998).
    [Crossref] [PubMed]
  68. J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
    [Crossref]
  69. I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
    [Crossref]

2016 (2)

H. Boecker and A. Drzezga, “A perspective on the future role of brain pet imaging in exercise science,” Neuroimage 131, 73–80 (2016).
[Crossref]

G. Ganesan, S. Y. Leu, A. Cerussi, B. Tromberg, D. M. Cooper, and P. Galassetti, “Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy,” Pediatr. Exerc. Sci. 28, 275–285 (2016).
[Crossref]

2015 (5)

K. Oussaidene, F. Prieur, S. Tagougui, A. Abaidia, R. Matran, and P. Mucci, “Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects,” Respir. Physiol. Neurobiol. 205, 53–60 (2015).
[Crossref]

R. Jung, M. Moser, S. Baucsek, S. Dern, and S. Schneider, “Activation patterns of different brain areas during incremental exercise measured by near-infrared spectroscopy,” Exp. Brain Res. 233, 1175–1180 (2015).
[Crossref] [PubMed]

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

2014 (6)

W. G. Murphy, “The sex difference in haemoglobin levels in adults — Mechanisms, causes, and consequences,” Blood Rev. 28, 41–47 (2014).
[Crossref] [PubMed]

N. J. Kirk-Sanchez and E. L. McGough, “Physical exercise and cognitive performance in the elderly: current perspectives,” Clin. Interv. Aging 9, 51–62 (2014).
[PubMed]

K. I. Erickson, R. L. Leckie, and A. M. Weinstein, “Physical activity, fitness, and gray matter volume,” Neurobiol. Aging 35Suppl 2, S20–S28 (2014).
[Crossref] [PubMed]

I. Heinonen, K. K. Kalliokoski, J. C. Hannukainen, D. J. Duncker, P. Nuutila, and J. Knuuti, “Organ-specific physiological responses to acute physical exercise and long-term training in humans,” Physiology (Bethesda) 29, 421–436 (2014).

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85Pt 1, 28–50 (2014).
[Crossref]

2013 (8)

M. Diop and K. St Lawrence, “Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight,” Biomed. Opt. Express 4, 447–459 (2013).
[Crossref] [PubMed]

T. Miyazawa, M. Horiuchi, H. Komine, J. Sugawara, P. J. Fadel, and S. Ogoh, “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113, 2841–2848 (2013).
[Crossref] [PubMed]

L. Bherer, K. I. Erickson, and T. Liu-Ambrose, “A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults,” J. Aging. Res. 2013, 1–8 (2013).

V. Bolduc, N. Thorin-Trescases, and E. Thorin, “Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging,” Am. J. Physiol. Heart Circ. Physiol. 305, H620–H633 (2013).
[Crossref] [PubMed]

V. Labelle, L. Bosquet, S. Mekary, and L. Bherer, “Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level,” Brain Cogn. 81, 10–17 (2013).
[Crossref]

N. Uranova, I. Zimina, O. Vikhreva, V. Rachmanova, A. Klintsova, and D. Orlovskaya, “Reduced Capillary Density in the Prefrontal Cortex in Schizophrenia,” AJMSM 1, 45–51 (2013).
[Crossref]

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS ONE 8, e64095 (2013).
[Crossref] [PubMed]

H. Mairbäurl, “Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells,” Front. Physiol. 4, 332 (2013).
[Crossref] [PubMed]

2012 (5)

C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
[Crossref] [PubMed]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

2011 (8)

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56, 1362–1371 (2011).
[Crossref] [PubMed]

C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
[Crossref] [PubMed]

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
[Crossref]

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

K. Sato, S. Ogoh, A. Hirasawa, A. Oue, and T. Sadamoto, “The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans,” J. Physiol. (Lond.) 589, 2847–2856 (2011).
[Crossref]

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref] [PubMed]

M. Dehaes, L. Gagnon, F. Lesage, M. Pélégrini-Issac, A. Vignaud, R. Valabrègue, R. Grebe, F. Wallois, and H. Benali, “Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging: a simulation study,” Biomed. Opt. Express 2, 680–695 (2011).
[Crossref] [PubMed]

2010 (4)

W. Schmidt and N. Prommer, “Impact of alterations in total hemoglobin mass on VO 2max,” Exerc. Sport Sci. Rev. 38, 68–75 (2010).
[Crossref] [PubMed]

T. Li, Q. Luo, and H. Gong, “Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy,” Behav. Brain Res. 209, 148–153 (2010).
[Crossref] [PubMed]

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49, 6324–6332 (2010).
[Crossref] [PubMed]

C. R. Rooks, N. J. Thom, K. K. McCully, and R. K. Dishman, “Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review,” Prog. Neurobiol. 92, 134–150 (2010).
[Crossref] [PubMed]

2009 (2)

P. Ekkekakis, “Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy,” J. Sport. Exerc. Psychol. 31, 505–553 (2009).
[Crossref] [PubMed]

N. Jausovec and K. Jausovec, “Do women see things differently than men do?”; Neuroimage 45, 198–207 (2009).
[Crossref]

2008 (3)

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

T. Rupp, R. Thomas, S. Perrey, and P. Stephane, “Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise,” Eur. J. Appl. Physiol. 102, 153–163 (2008).

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13, 054019 (2008).
[Crossref] [PubMed]

2007 (2)

A. W. Subudhi, A. C. Dimmen, and R. C. Roach, “Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise,” J. Appl. Physiol. 103, 177–183 (2007).
[Crossref] [PubMed]

D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46, 1717–1725 (2007).
[Crossref] [PubMed]

2006 (3)

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

L. Li, S. Mac-Mary, J.-M. Sainthillier, S. Nouveau, O. de Lacharriere, and P. Humbert, “Age-Related Changes of the Cutaneous Microcirculation in vivo,” Gerontology 52, 142–153 (2006).
[Crossref] [PubMed]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
[Crossref] [PubMed]

2005 (3)

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” J. Opt. Soc. Am. A 22, 1874–1882 (2005).
[Crossref]

2004 (6)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23Suppl 1, S275–S288 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43, 3037–3047 (2004).
[Crossref] [PubMed]

K. Shibuya, J. Tanaka, N. Kuboyama, S. Murai, and T. Ogaki, “Cerebral cortex activity during supramaximal exhaustive exercise,” J. Sports Med. Phys. Fitness 44, 215–219 (2004).
[PubMed]

K.-I. Shibuya, J. Tanaka, N. Kuboyama, and T. Ogaki, “Cerebral oxygenation during intermittent supramaximal exercise,” Respir. Physiol. Neurobiol. 140, 165–172 (2004).
[Crossref] [PubMed]

J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
[Crossref]

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

2001 (2)

R. Wolthuis, M. van Aken, K. Fountas, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Determination of water concentration in brain tissue by Raman spectroscopy,” Anal. Chem. 73, 3915–3920 (2001).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26, 1963–1965 (2001).
[Crossref]

2000 (1)

K. Ide and N. H. Secher, “Cerebral blood flow and metabolism during exercise,” Prog. Neurobiol. 61, 397–414 (2000).
[Crossref] [PubMed]

1998 (3)

T. D. Noakes, “Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal,” Med. Sci. Sports Exerc. 30, 1381–1398 (1998).
[PubMed]

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnires, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998).
[Crossref]

K. Ide, F. Pott, J. J. Van Lieshout, and N. H. Secher, “Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass,” Acta Physiol. Scand. 162, 13–20 (1998).
[Crossref] [PubMed]

1996 (1)

G. Hellström, W. Fischer-Colbrie, N. G. Wahlgren, and T. Jogestrand, “Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise,” J. Appl. Physiol. 81, 413–418 (1996).
[PubMed]

1993 (1)

H. N. Mayrovitz and M. B. Regan, “Gender differences in facial skin blood perfusion during basal and heated conditions determined by laser Doppler flowmetry,” Microvasc. Res. 45, 211–218 (1993).
[Crossref] [PubMed]

1988 (1)

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[Crossref] [PubMed]

1977 (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref] [PubMed]

1975 (1)

C. T. Davies and A. J. Sargeant, “Circadian variation in physiological responses to exercise on a stationary bicycle ergometer,” Br. J. Ind. Med. 32, 110–114 (1975).
[PubMed]

Abaidia, A.

K. Oussaidene, F. Prieur, S. Tagougui, A. Abaidia, R. Matran, and P. Mucci, “Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects,” Respir. Physiol. Neurobiol. 205, 53–60 (2015).
[Crossref]

Ali, L.

J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
[Crossref]

Allen, J. S.

C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
[Crossref] [PubMed]

Andrianopoulos, V.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Arce-Esquivel, A. A.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Asada, T.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Athanasopoulos, D.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Bache, R. J.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Bär, K.-J.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Barker, H.

J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
[Crossref]

Bassi, A.

Baucsek, S.

R. Jung, M. Moser, S. Baucsek, S. Dern, and S. Schneider, “Activation patterns of different brain areas during incremental exercise measured by near-infrared spectroscopy,” Exp. Brain Res. 233, 1175–1180 (2015).
[Crossref] [PubMed]

Bays, R.

Benali, H.

Bender, S. B.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Berger, A. J.

Bherer, L.

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

V. Labelle, L. Bosquet, S. Mekary, and L. Bherer, “Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level,” Brain Cogn. 81, 10–17 (2013).
[Crossref]

L. Bherer, K. I. Erickson, and T. Liu-Ambrose, “A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults,” J. Aging. Res. 2013, 1–8 (2013).

C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
[Crossref] [PubMed]

Boas, D. A.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56, 1362–1371 (2011).
[Crossref] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13, 054019 (2008).
[Crossref] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23Suppl 1, S275–S288 (2004).
[Crossref] [PubMed]

Boecker, H.

H. Boecker and A. Drzezga, “A perspective on the future role of brain pet imaging in exercise science,” Neuroimage 131, 73–80 (2016).
[Crossref]

Bolduc, V.

V. Bolduc, N. Thorin-Trescases, and E. Thorin, “Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging,” Am. J. Physiol. Heart Circ. Physiol. 305, H620–H633 (2013).
[Crossref] [PubMed]

Bonnéry, C.

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
[Crossref] [PubMed]

Bosquet, L.

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

V. Labelle, L. Bosquet, S. Mekary, and L. Bherer, “Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level,” Brain Cogn. 81, 10–17 (2013).
[Crossref]

Bradwell, A. R.

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

Bruining, H. A.

R. Wolthuis, M. van Aken, K. Fountas, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Determination of water concentration in brain tissue by Raman spectroscopy,” Anal. Chem. 73, 3915–3920 (2001).
[Crossref] [PubMed]

Brünner, F.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Caffini, M.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85Pt 1, 28–50 (2014).
[Crossref]

Cerussi, A.

G. Ganesan, S. Y. Leu, A. Cerussi, B. Tromberg, D. M. Cooper, and P. Galassetti, “Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy,” Pediatr. Exerc. Sci. 28, 275–285 (2016).
[Crossref]

Chaddock, L.

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Chan, C. W.

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

Chen, C.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

Cheng, Y.

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Cherouveim, E.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Collins, P.

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

Comelli, D.

Contini, D.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85Pt 1, 28–50 (2014).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
[Crossref] [PubMed]

Cooper, D. M.

G. Ganesan, S. Y. Leu, A. Cerussi, B. Tromberg, D. M. Cooper, and P. Galassetti, “Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy,” Pediatr. Exerc. Sci. 28, 275–285 (2016).
[Crossref]

Cooper, R. J.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

Cope, M.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Cubeddu, R.

Culver, J. P.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23Suppl 1, S275–S288 (2004).
[Crossref] [PubMed]

Dalsgaard, M. K.

J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
[Crossref]

Davies, C. T.

C. T. Davies and A. J. Sargeant, “Circadian variation in physiological responses to exercise on a stationary bicycle ergometer,” Br. J. Ind. Med. 32, 110–114 (1975).
[PubMed]

Davis, M. J.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Dawson, E. A.

J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
[Crossref]

de la Cruz, F.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

de Lacharriere, O.

L. Li, S. Mac-Mary, J.-M. Sainthillier, S. Nouveau, O. de Lacharriere, and P. Humbert, “Age-Related Changes of the Cutaneous Microcirculation in vivo,” Gerontology 52, 142–153 (2006).
[Crossref] [PubMed]

Dehaes, M.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

M. Dehaes, L. Gagnon, F. Lesage, M. Pélégrini-Issac, A. Vignaud, R. Valabrègue, R. Grebe, F. Wallois, and H. Benali, “Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging: a simulation study,” Biomed. Opt. Express 2, 680–695 (2011).
[Crossref] [PubMed]

Dehghani, H.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

Delpy, D. T.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Deocaris, C. C.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Dern, S.

R. Jung, M. Moser, S. Baucsek, S. Dern, and S. Schneider, “Activation patterns of different brain areas during incremental exercise measured by near-infrared spectroscopy,” Exp. Brain Res. 233, 1175–1180 (2015).
[Crossref] [PubMed]

Desjardins, M.

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
[Crossref] [PubMed]

Desjardins-Crépeau, L.

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

Dimmen, A. C.

A. W. Subudhi, A. C. Dimmen, and R. C. Roach, “Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise,” J. Appl. Physiol. 103, 177–183 (2007).
[Crossref] [PubMed]

Diop, M.

Dishman, R. K.

C. R. Rooks, N. J. Thom, K. K. McCully, and R. K. Dishman, “Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review,” Prog. Neurobiol. 92, 134–150 (2010).
[Crossref] [PubMed]

Dögnitz, N.

Drzezga, A.

H. Boecker and A. Drzezga, “A perspective on the future role of brain pet imaging in exercise science,” Neuroimage 131, 73–80 (2016).
[Crossref]

Duncker, D. J.

I. Heinonen, K. K. Kalliokoski, J. C. Hannukainen, D. J. Duncker, P. Nuutila, and J. Knuuti, “Organ-specific physiological responses to acute physical exercise and long-term training in humans,” Physiology (Bethesda) 29, 421–436 (2014).

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Dupuy, O.

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

Eggebrecht, A. T.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

Ekkekakis, P.

P. Ekkekakis, “Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy,” J. Sport. Exerc. Psychol. 31, 505–553 (2009).
[Crossref] [PubMed]

Erickson, K. I.

K. I. Erickson, R. L. Leckie, and A. M. Weinstein, “Physical activity, fitness, and gray matter volume,” Neurobiol. Aging 35Suppl 2, S20–S28 (2014).
[Crossref] [PubMed]

L. Bherer, K. I. Erickson, and T. Liu-Ambrose, “A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults,” J. Aging. Res. 2013, 1–8 (2013).

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Erwin, J. M.

C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
[Crossref] [PubMed]

Fadel, P. J.

T. Miyazawa, M. Horiuchi, H. Komine, J. Sugawara, P. J. Fadel, and S. Ogoh, “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113, 2841–2848 (2013).
[Crossref] [PubMed]

Fantini, S.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS ONE 8, e64095 (2013).
[Crossref] [PubMed]

Ferradal, S. L.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

Fischer-Colbrie, W.

G. Hellström, W. Fischer-Colbrie, N. G. Wahlgren, and T. Jogestrand, “Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise,” J. Appl. Physiol. 81, 413–418 (1996).
[PubMed]

Flicker, B.

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Fountas, K.

R. Wolthuis, M. van Aken, K. Fountas, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Determination of water concentration in brain tissue by Raman spectroscopy,” Anal. Chem. 73, 3915–3920 (2001).
[Crossref] [PubMed]

Franceschini, M. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23Suppl 1, S275–S288 (2004).
[Crossref] [PubMed]

Fraser, S.

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

Fraser, S. A.

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

Fukuda, M.

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

Futatsubashi, M.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Gabriel, H. W.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Gagnon, L.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

M. Dehaes, L. Gagnon, F. Lesage, M. Pélégrini-Issac, A. Vignaud, R. Valabrègue, R. Grebe, F. Wallois, and H. Benali, “Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging: a simulation study,” Biomed. Opt. Express 2, 680–695 (2011).
[Crossref] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56, 1362–1371 (2011).
[Crossref] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13, 054019 (2008).
[Crossref] [PubMed]

Galassetti, P.

G. Ganesan, S. Y. Leu, A. Cerussi, B. Tromberg, D. M. Cooper, and P. Galassetti, “Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy,” Pediatr. Exerc. Sci. 28, 275–285 (2016).
[Crossref]

Ganesan, G.

G. Ganesan, S. Y. Leu, A. Cerussi, B. Tromberg, D. M. Cooper, and P. Galassetti, “Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy,” Pediatr. Exerc. Sci. 28, 275–285 (2016).
[Crossref]

Gauthier, C.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13, 054019 (2008).
[Crossref] [PubMed]

Gauthier, C. J.

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

Goldenholz, D.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56, 1362–1371 (2011).
[Crossref] [PubMed]

Gong, H.

T. Li, Q. Luo, and H. Gong, “Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy,” Behav. Brain Res. 209, 148–153 (2010).
[Crossref] [PubMed]

González-Alonso, J.

J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
[Crossref]

J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
[Crossref]

Gordon, A. D.

C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
[Crossref] [PubMed]

Grebe, R.

Greve, D. N.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56, 1362–1371 (2011).
[Crossref] [PubMed]

Gussew, A.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Habazettl, H.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Hallacoglu, B.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS ONE 8, e64095 (2013).
[Crossref] [PubMed]

Hannukainen, J. C.

I. Heinonen, K. K. Kalliokoski, J. C. Hannukainen, D. J. Duncker, P. Nuutila, and J. Knuuti, “Organ-specific physiological responses to acute physical exercise and long-term training in humans,” Physiology (Bethesda) 29, 421–436 (2014).

Harris, S.

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

Hebrank, A. C.

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Heinonen, I.

I. Heinonen, K. K. Kalliokoski, J. C. Hannukainen, D. J. Duncker, P. Nuutila, and J. Knuuti, “Organ-specific physiological responses to acute physical exercise and long-term training in humans,” Physiology (Bethesda) 29, 421–436 (2014).

Hellström, G.

G. Hellström, W. Fischer-Colbrie, N. G. Wahlgren, and T. Jogestrand, “Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise,” J. Appl. Physiol. 81, 413–418 (1996).
[PubMed]

Herbsleb, M.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Hirasawa, A.

K. Sato, S. Ogoh, A. Hirasawa, A. Oue, and T. Sadamoto, “The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans,” J. Physiol. (Lond.) 589, 2847–2856 (2011).
[Crossref]

Hof, P. R.

C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
[Crossref] [PubMed]

Hoge, R.

C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
[Crossref] [PubMed]

Hoge, R. D.

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13, 054019 (2008).
[Crossref] [PubMed]

Hopkins, W. D.

C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
[Crossref] [PubMed]

Horiuchi, M.

T. Miyazawa, M. Horiuchi, H. Komine, J. Sugawara, P. J. Fadel, and S. Ogoh, “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113, 2841–2848 (2013).
[Crossref] [PubMed]

Humbert, P.

L. Li, S. Mac-Mary, J.-M. Sainthillier, S. Nouveau, O. de Lacharriere, and P. Humbert, “Age-Related Changes of the Cutaneous Microcirculation in vivo,” Gerontology 52, 142–153 (2006).
[Crossref] [PubMed]

Huppert, T. J.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

Ide, K.

K. Ide and N. H. Secher, “Cerebral blood flow and metabolism during exercise,” Prog. Neurobiol. 61, 397–414 (2000).
[Crossref] [PubMed]

K. Ide, F. Pott, J. J. Van Lieshout, and N. H. Secher, “Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass,” Acta Physiol. Scand. 162, 13–20 (1998).
[Crossref] [PubMed]

Ijichi, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Imai, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Imray, C. H. E.

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

Isobe, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Ito, A.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Itoh, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Iwano, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref] [PubMed]

Jausovec, K.

N. Jausovec and K. Jausovec, “Do women see things differently than men do?”; Neuroimage 45, 198–207 (2009).
[Crossref]

Jausovec, N.

N. Jausovec and K. Jausovec, “Do women see things differently than men do?”; Neuroimage 45, 198–207 (2009).
[Crossref]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref] [PubMed]

Jogestrand, T.

G. Hellström, W. Fischer-Colbrie, N. G. Wahlgren, and T. Jogestrand, “Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise,” J. Appl. Physiol. 81, 413–418 (1996).
[PubMed]

Jung, R.

R. Jung, M. Moser, S. Baucsek, S. Dern, and S. Schneider, “Activation patterns of different brain areas during incremental exercise measured by near-infrared spectroscopy,” Exp. Brain Res. 233, 1175–1180 (2015).
[Crossref] [PubMed]

Kalliokoski, K. K.

I. Heinonen, K. K. Kalliokoski, J. C. Hannukainen, D. J. Duncker, P. Nuutila, and J. Knuuti, “Organ-specific physiological responses to acute physical exercise and long-term training in humans,” Physiology (Bethesda) 29, 421–436 (2014).

Kalsi, K.

J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
[Crossref]

Kameyama, M.

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

Kanno, T.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Kaskhedikar, G.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56, 1362–1371 (2011).
[Crossref] [PubMed]

Kato, M.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Kawada, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Kawagoe, R.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref] [PubMed]

Kennedy, K. M.

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Kienle, A.

Kirk-Sanchez, N. J.

N. J. Kirk-Sanchez and E. L. McGough, “Physical exercise and cognitive performance in the elderly: current perspectives,” Clin. Interv. Aging 9, 51–62 (2014).
[PubMed]

Kitazawa, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref] [PubMed]

Kizuka, T.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Klintsova, A.

N. Uranova, I. Zimina, O. Vikhreva, V. Rachmanova, A. Klintsova, and D. Orlovskaya, “Reduced Capillary Density in the Prefrontal Cortex in Schizophrenia,” AJMSM 1, 45–51 (2013).
[Crossref]

Knuuti, J.

I. Heinonen, K. K. Kalliokoski, J. C. Hannukainen, D. J. Duncker, P. Nuutila, and J. Knuuti, “Organ-specific physiological responses to acute physical exercise and long-term training in humans,” Physiology (Bethesda) 29, 421–436 (2014).

Komine, H.

T. Miyazawa, M. Horiuchi, H. Komine, J. Sugawara, P. J. Fadel, and S. Ogoh, “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113, 2841–2848 (2013).
[Crossref] [PubMed]

Kramer, A. F.

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Kuboyama, N.

K.-I. Shibuya, J. Tanaka, N. Kuboyama, and T. Ogaki, “Cerebral oxygenation during intermittent supramaximal exercise,” Respir. Physiol. Neurobiol. 140, 165–172 (2004).
[Crossref] [PubMed]

K. Shibuya, J. Tanaka, N. Kuboyama, S. Murai, and T. Ogaki, “Cerebral cortex activity during supramaximal exhaustive exercise,” J. Sports Med. Phys. Fitness 44, 215–219 (2004).
[PubMed]

Kusaka, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Labelle, V.

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

V. Labelle, L. Bosquet, S. Mekary, and L. Bherer, “Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level,” Brain Cogn. 81, 10–17 (2013).
[Crossref]

Laughlin, M. H.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Leckie, R. L.

K. I. Erickson, R. L. Leckie, and A. M. Weinstein, “Physical activity, fitness, and gray matter volume,” Neurobiol. Aging 35Suppl 2, S20–S28 (2014).
[Crossref] [PubMed]

Leclerc, P.-O.

C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
[Crossref] [PubMed]

P.-O. Leclerc, “Développement d’un système de spectroscopie infrarouge résolue temporellement pour la quantification des concentrations d’hémoglobine cérébrale,” Master’s thesis, Institut de Génie Biomédical, Université de Montréal (2011).

Lesage, F.

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
[Crossref] [PubMed]

M. Dehaes, L. Gagnon, F. Lesage, M. Pélégrini-Issac, A. Vignaud, R. Valabrègue, R. Grebe, F. Wallois, and H. Benali, “Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging: a simulation study,” Biomed. Opt. Express 2, 680–695 (2011).
[Crossref] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13, 054019 (2008).
[Crossref] [PubMed]

Leu, S. Y.

G. Ganesan, S. Y. Leu, A. Cerussi, B. Tromberg, D. M. Cooper, and P. Galassetti, “Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy,” Pediatr. Exerc. Sci. 28, 275–285 (2016).
[Crossref]

Li, L.

L. Li, S. Mac-Mary, J.-M. Sainthillier, S. Nouveau, O. de Lacharriere, and P. Humbert, “Age-Related Changes of the Cutaneous Microcirculation in vivo,” Gerontology 52, 142–153 (2006).
[Crossref] [PubMed]

Li, T.

T. Li, Q. Luo, and H. Gong, “Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy,” Behav. Brain Res. 209, 148–153 (2010).
[Crossref] [PubMed]

Liebert, A.

Liu-Ambrose, T.

L. Bherer, K. I. Erickson, and T. Liu-Ambrose, “A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults,” J. Aging. Res. 2013, 1–8 (2013).

Louvaris, Z.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Low, D. A.

J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
[Crossref]

Lu, H.

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Luo, Q.

T. Li, Q. Luo, and H. Gong, “Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy,” Behav. Brain Res. 209, 148–153 (2010).
[Crossref] [PubMed]

Macdonald, R.

Mac-Mary, S.

L. Li, S. Mac-Mary, J.-M. Sainthillier, S. Nouveau, O. de Lacharriere, and P. Humbert, “Age-Related Changes of the Cutaneous Microcirculation in vivo,” Gerontology 52, 142–153 (2006).
[Crossref] [PubMed]

Mailey, E.

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Mairbäurl, H.

H. Mairbäurl, “Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells,” Front. Physiol. 4, 332 (2013).
[Crossref] [PubMed]

Martelli, F.

Matran, R.

K. Oussaidene, F. Prieur, S. Tagougui, A. Abaidia, R. Matran, and P. Mucci, “Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects,” Respir. Physiol. Neurobiol. 205, 53–60 (2015).
[Crossref]

Mayrovitz, H. N.

H. N. Mayrovitz and M. B. Regan, “Gender differences in facial skin blood perfusion during basal and heated conditions determined by laser Doppler flowmetry,” Microvasc. Res. 45, 211–218 (1993).
[Crossref] [PubMed]

McAuley, E.

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

McCully, K. K.

C. R. Rooks, N. J. Thom, K. K. McCully, and R. K. Dishman, “Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review,” Prog. Neurobiol. 92, 134–150 (2010).
[Crossref] [PubMed]

McGough, E. L.

N. J. Kirk-Sanchez and E. L. McGough, “Physical exercise and cognitive performance in the elderly: current perspectives,” Clin. Interv. Aging 9, 51–62 (2014).
[PubMed]

Mekari, S.

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

Mekary, S.

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

V. Labelle, L. Bosquet, S. Mekary, and L. Bherer, “Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level,” Brain Cogn. 81, 10–17 (2013).
[Crossref]

Merkus, D.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Mikuni, M.

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

Miyazawa, T.

T. Miyazawa, M. Horiuchi, H. Komine, J. Sugawara, P. J. Fadel, and S. Ogoh, “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113, 2841–2848 (2013).
[Crossref] [PubMed]

Möller, M.

Moser, M.

R. Jung, M. Moser, S. Baucsek, S. Dern, and S. Schneider, “Activation patterns of different brain areas during incremental exercise measured by near-infrared spectroscopy,” Exp. Brain Res. 233, 1175–1180 (2015).
[Crossref] [PubMed]

Mucci, P.

K. Oussaidene, F. Prieur, S. Tagougui, A. Abaidia, R. Matran, and P. Mucci, “Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects,” Respir. Physiol. Neurobiol. 205, 53–60 (2015).
[Crossref]

Murai, S.

K. Shibuya, J. Tanaka, N. Kuboyama, S. Murai, and T. Ogaki, “Cerebral cortex activity during supramaximal exhaustive exercise,” J. Sports Med. Phys. Fitness 44, 215–219 (2004).
[PubMed]

Murphy, W. G.

W. G. Murphy, “The sex difference in haemoglobin levels in adults — Mechanisms, causes, and consequences,” Blood Rev. 28, 41–47 (2014).
[Crossref] [PubMed]

Myers, S. D.

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

Namba, M.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Nishida, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Nishijima, T.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Noakes, T. D.

T. D. Noakes, “Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal,” Med. Sci. Sports Exerc. 30, 1381–1398 (1998).
[PubMed]

Nobesawa, S.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Nouveau, S.

L. Li, S. Mac-Mary, J.-M. Sainthillier, S. Nouveau, O. de Lacharriere, and P. Humbert, “Age-Related Changes of the Cutaneous Microcirculation in vivo,” Gerontology 52, 142–153 (2006).
[Crossref] [PubMed]

Nuutila, P.

I. Heinonen, K. K. Kalliokoski, J. C. Hannukainen, D. J. Duncker, P. Nuutila, and J. Knuuti, “Organ-specific physiological responses to acute physical exercise and long-term training in humans,” Physiology (Bethesda) 29, 421–436 (2014).

Obrig, H.

Oda, M.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Ogaki, T.

K. Shibuya, J. Tanaka, N. Kuboyama, S. Murai, and T. Ogaki, “Cerebral cortex activity during supramaximal exhaustive exercise,” J. Sports Med. Phys. Fitness 44, 215–219 (2004).
[PubMed]

K.-I. Shibuya, J. Tanaka, N. Kuboyama, and T. Ogaki, “Cerebral oxygenation during intermittent supramaximal exercise,” Respir. Physiol. Neurobiol. 140, 165–172 (2004).
[Crossref] [PubMed]

Ogoh, S.

T. Miyazawa, M. Horiuchi, H. Komine, J. Sugawara, P. J. Fadel, and S. Ogoh, “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113, 2841–2848 (2013).
[Crossref] [PubMed]

K. Sato, S. Ogoh, A. Hirasawa, A. Oue, and T. Sadamoto, “The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans,” J. Physiol. (Lond.) 589, 2847–2856 (2011).
[Crossref]

Ohmae, E.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Okada, H.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Okubo, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Omori, T.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Orlovskaya, D.

N. Uranova, I. Zimina, O. Vikhreva, V. Rachmanova, A. Klintsova, and D. Orlovskaya, “Reduced Capillary Density in the Prefrontal Cortex in Schizophrenia,” AJMSM 1, 45–51 (2013).
[Crossref]

Osada, T.

J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
[Crossref]

Ouchi, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Oue, A.

K. Sato, S. Ogoh, A. Hirasawa, A. Oue, and T. Sadamoto, “The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans,” J. Physiol. (Lond.) 589, 2847–2856 (2011).
[Crossref]

Oussaidene, K.

K. Oussaidene, F. Prieur, S. Tagougui, A. Abaidia, R. Matran, and P. Mucci, “Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects,” Respir. Physiol. Neurobiol. 205, 53–60 (2015).
[Crossref]

Padilla, J.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Paglia, F.

Park, D. C.

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Patterson, M. S.

Pattinson, K. T. S.

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

Pearson, J.

J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
[Crossref]

Pélégrini-Issac, M.

Perdue, K.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56, 1362–1371 (2011).
[Crossref] [PubMed]

Perdue, K. L.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

Perrey, S.

T. Rupp, R. Thomas, S. Perrey, and P. Stephane, “Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise,” Eur. J. Appl. Physiol. 102, 153–163 (2008).

Phillips, K. A.

C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
[Crossref] [PubMed]

Pifferi, A.

Pott, F.

K. Ide, F. Pott, J. J. Van Lieshout, and N. H. Secher, “Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass,” Acta Physiol. Scand. 162, 13–20 (1998).
[Crossref] [PubMed]

Pouliot, P.

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
[Crossref] [PubMed]

Prakash, R. S.

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Prieur, F.

K. Oussaidene, F. Prieur, S. Tagougui, A. Abaidia, R. Matran, and P. Mucci, “Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects,” Respir. Physiol. Neurobiol. 205, 53–60 (2015).
[Crossref]

Prommer, N.

W. Schmidt and N. Prommer, “Impact of alterations in total hemoglobin mass on VO 2max,” Exerc. Sport Sci. Rev. 38, 68–75 (2010).
[Crossref] [PubMed]

Pucci, O.

Puppels, G. J.

R. Wolthuis, M. van Aken, K. Fountas, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Determination of water concentration in brain tissue by Raman spectroscopy,” Anal. Chem. 73, 3915–3920 (2001).
[Crossref] [PubMed]

Puta, C.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Rachmanova, V.

N. Uranova, I. Zimina, O. Vikhreva, V. Rachmanova, A. Klintsova, and D. Orlovskaya, “Reduced Capillary Density in the Prefrontal Cortex in Schizophrenia,” AJMSM 1, 45–51 (2013).
[Crossref]

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85Pt 1, 28–50 (2014).
[Crossref]

Regan, M. B.

H. N. Mayrovitz and M. B. Regan, “Gender differences in facial skin blood perfusion during basal and heated conditions determined by laser Doppler flowmetry,” Microvasc. Res. 45, 211–218 (1993).
[Crossref] [PubMed]

Reichenbach, J. R.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Reynolds, E. O.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Rinneberg, H.

Roach, R. C.

A. W. Subudhi, A. C. Dimmen, and R. C. Roach, “Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise,” J. Appl. Physiol. 103, 177–183 (2007).
[Crossref] [PubMed]

Robinson, J. S.

R. Wolthuis, M. van Aken, K. Fountas, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Determination of water concentration in brain tissue by Raman spectroscopy,” Anal. Chem. 73, 3915–3920 (2001).
[Crossref] [PubMed]

Rodrigue, K. M.

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Rooks, C. R.

C. R. Rooks, N. J. Thom, K. K. McCully, and R. K. Dishman, “Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review,” Prog. Neurobiol. 92, 134–150 (2010).
[Crossref] [PubMed]

Roussos, C.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Rupp, T.

T. Rupp, R. Thomas, S. Perrey, and P. Stephane, “Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise,” Eur. J. Appl. Physiol. 102, 153–163 (2008).

Saager, R. B.

Sadamoto, T.

K. Sato, S. Ogoh, A. Hirasawa, A. Oue, and T. Sadamoto, “The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans,” J. Physiol. (Lond.) 589, 2847–2856 (2011).
[Crossref]

Sainthillier, J.-M.

L. Li, S. Mac-Mary, J.-M. Sainthillier, S. Nouveau, O. de Lacharriere, and P. Humbert, “Age-Related Changes of the Cutaneous Microcirculation in vivo,” Gerontology 52, 142–153 (2006).
[Crossref] [PubMed]

Sakairi, Y.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Sargeant, A. J.

C. T. Davies and A. J. Sargeant, “Circadian variation in physiological responses to exercise on a stationary bicycle ergometer,” Br. J. Ind. Med. 32, 110–114 (1975).
[PubMed]

Sassaroli, A.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS ONE 8, e64095 (2013).
[Crossref] [PubMed]

Sato, K.

K. Sato, S. Ogoh, A. Hirasawa, A. Oue, and T. Sadamoto, “The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans,” J. Physiol. (Lond.) 589, 2847–2856 (2011).
[Crossref]

Schachtzabel, C.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Schmidt, W.

W. Schmidt and N. Prommer, “Impact of alterations in total hemoglobin mass on VO 2max,” Exerc. Sport Sci. Rev. 38, 68–75 (2010).
[Crossref] [PubMed]

Schneider, S.

R. Jung, M. Moser, S. Baucsek, S. Dern, and S. Schneider, “Activation patterns of different brain areas during incremental exercise measured by near-infrared spectroscopy,” Exp. Brain Res. 233, 1175–1180 (2015).
[Crossref] [PubMed]

Schumann, A.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Secher, N. H.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
[Crossref]

K. Ide and N. H. Secher, “Cerebral blood flow and metabolism during exercise,” Prog. Neurobiol. 61, 397–414 (2000).
[Crossref] [PubMed]

K. Ide, F. Pott, J. J. Van Lieshout, and N. H. Secher, “Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass,” Acta Physiol. Scand. 162, 13–20 (1998).
[Crossref] [PubMed]

Selb, J.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13, 054019 (2008).
[Crossref] [PubMed]

Sherwood, C. C.

C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
[Crossref] [PubMed]

Shibuya, K.

K. Shibuya, J. Tanaka, N. Kuboyama, S. Murai, and T. Ogaki, “Cerebral cortex activity during supramaximal exhaustive exercise,” J. Sports Med. Phys. Fitness 44, 215–219 (2004).
[PubMed]

Shibuya, K.-I.

K.-I. Shibuya, J. Tanaka, N. Kuboyama, and T. Ogaki, “Cerebral oxygenation during intermittent supramaximal exercise,” Respir. Physiol. Neurobiol. 140, 165–172 (2004).
[Crossref] [PubMed]

Shibuya, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref] [PubMed]

Simmons, G. H.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Smesny, S.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Snyder, A. Z.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

Soya, H.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Spinelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85Pt 1, 28–50 (2014).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
[Crossref] [PubMed]

St Lawrence, K.

Steinbrink, J.

Stephane, P.

T. Rupp, R. Thomas, S. Perrey, and P. Stephane, “Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise,” Eur. J. Appl. Physiol. 102, 153–163 (2008).

Stöhr, E.

J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
[Crossref]

Subudhi, A. W.

A. W. Subudhi, A. C. Dimmen, and R. C. Roach, “Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise,” J. Appl. Physiol. 103, 177–183 (2007).
[Crossref] [PubMed]

Sugawara, J.

T. Miyazawa, M. Horiuchi, H. Komine, J. Sugawara, P. J. Fadel, and S. Ogoh, “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113, 2841–2848 (2013).
[Crossref] [PubMed]

Suzuki, T.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Szabo, A.

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Tagougui, S.

K. Oussaidene, F. Prieur, S. Tagougui, A. Abaidia, R. Matran, and P. Mucci, “Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects,” Respir. Physiol. Neurobiol. 205, 53–60 (2015).
[Crossref]

Takahashi, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref] [PubMed]

Takikawa, Y.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref] [PubMed]

Tanaka, J.

K.-I. Shibuya, J. Tanaka, N. Kuboyama, and T. Ogaki, “Cerebral oxygenation during intermittent supramaximal exercise,” Respir. Physiol. Neurobiol. 140, 165–172 (2004).
[Crossref] [PubMed]

K. Shibuya, J. Tanaka, N. Kuboyama, S. Murai, and T. Ogaki, “Cerebral cortex activity during supramaximal exhaustive exercise,” J. Sports Med. Phys. Fitness 44, 215–219 (2004).
[PubMed]

Taroni, P.

Thom, N. J.

C. R. Rooks, N. J. Thom, K. K. McCully, and R. K. Dishman, “Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review,” Prog. Neurobiol. 92, 134–150 (2010).
[Crossref] [PubMed]

Thomas, R.

T. Rupp, R. Thomas, S. Perrey, and P. Stephane, “Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise,” Eur. J. Appl. Physiol. 102, 153–163 (2008).

Thorin, E.

V. Bolduc, N. Thorin-Trescases, and E. Thorin, “Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging,” Am. J. Physiol. Heart Circ. Physiol. 305, H620–H633 (2013).
[Crossref] [PubMed]

Thorin-Trescases, N.

V. Bolduc, N. Thorin-Trescases, and E. Thorin, “Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging,” Am. J. Physiol. Heart Circ. Physiol. 305, H620–H633 (2013).
[Crossref] [PubMed]

Timinkul, A.

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Toronov, V.

Torricelli, A.

Tromberg, B.

G. Ganesan, S. Y. Leu, A. Cerussi, B. Tromberg, D. M. Cooper, and P. Galassetti, “Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy,” Pediatr. Exerc. Sci. 28, 275–285 (2016).
[Crossref]

Ueda, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Uehara, T.

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

Uh, J.

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Uranova, N.

N. Uranova, I. Zimina, O. Vikhreva, V. Rachmanova, A. Klintsova, and D. Orlovskaya, “Reduced Capillary Density in the Prefrontal Cortex in Schizophrenia,” AJMSM 1, 45–51 (2013).
[Crossref]

Valabrègue, R.

van Aken, M.

R. Wolthuis, M. van Aken, K. Fountas, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Determination of water concentration in brain tissue by Raman spectroscopy,” Anal. Chem. 73, 3915–3920 (2001).
[Crossref] [PubMed]

van den Bergh, H.

van Lieshout, J. J.

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

K. Ide, F. Pott, J. J. Van Lieshout, and N. H. Secher, “Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass,” Acta Physiol. Scand. 162, 13–20 (1998).
[Crossref] [PubMed]

Vignaud, A.

Vikhreva, O.

N. Uranova, I. Zimina, O. Vikhreva, V. Rachmanova, A. Klintsova, and D. Orlovskaya, “Reduced Capillary Density in the Prefrontal Cortex in Schizophrenia,” AJMSM 1, 45–51 (2013).
[Crossref]

Villringer, A.

Vogiatzis, I.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Volianitis, S.

J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
[Crossref]

Voss, M. W.

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Wabnitz, H.

Wagner, G.

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

Wagner, H.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Wagner, P. D.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Wagnires, G.

Wahlgren, N. G.

G. Hellström, W. Fischer-Colbrie, N. G. Wahlgren, and T. Jogestrand, “Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise,” J. Appl. Physiol. 81, 413–418 (1996).
[PubMed]

Wallois, F.

Weinstein, A. M.

K. I. Erickson, R. L. Leckie, and A. M. Weinstein, “Physical activity, fitness, and gray matter volume,” Neurobiol. Aging 35Suppl 2, S20–S28 (2014).
[Crossref] [PubMed]

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

White, B. R.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

White, S. M.

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Wojcicki, T. R.

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Wolthuis, R.

R. Wolthuis, M. van Aken, K. Fountas, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Determination of water concentration in brain tissue by Raman spectroscopy,” Anal. Chem. 73, 3915–3920 (2001).
[Crossref] [PubMed]

Wray, S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Wright, A. D.

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

Wyatt, J. S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Xu, F.

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Yamashita, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Yoshiga, C. C.

J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
[Crossref]

Yoshikawa, E.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

Yücel, M. A.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

Zaccanti, G.

Zakynthinos, S.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

Zhan, Y.

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

Zimina, I.

N. Uranova, I. Zimina, O. Vikhreva, V. Rachmanova, A. Klintsova, and D. Orlovskaya, “Reduced Capillary Density in the Prefrontal Cortex in Schizophrenia,” AJMSM 1, 45–51 (2013).
[Crossref]

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85Pt 1, 28–50 (2014).
[Crossref]

Acta Physiol. Scand. (1)

K. Ide, F. Pott, J. J. Van Lieshout, and N. H. Secher, “Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass,” Acta Physiol. Scand. 162, 13–20 (1998).
[Crossref] [PubMed]

AJMSM (1)

N. Uranova, I. Zimina, O. Vikhreva, V. Rachmanova, A. Klintsova, and D. Orlovskaya, “Reduced Capillary Density in the Prefrontal Cortex in Schizophrenia,” AJMSM 1, 45–51 (2013).
[Crossref]

Am. J. Physiol. Heart Circ. Physiol. (1)

V. Bolduc, N. Thorin-Trescases, and E. Thorin, “Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging,” Am. J. Physiol. Heart Circ. Physiol. 305, H620–H633 (2013).
[Crossref] [PubMed]

Am. J. Physiol. Regul. Integr. Comp. Physiol. (1)

J. Pearson, D. A. Low, E. Stöhr, K. Kalsi, L. Ali, H. Barker, and J. González-Alonso, “Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R663–R673 (2011).
[Crossref]

Anal. Chem. (1)

R. Wolthuis, M. van Aken, K. Fountas, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Determination of water concentration in brain tissue by Raman spectroscopy,” Anal. Chem. 73, 3915–3920 (2001).
[Crossref] [PubMed]

Appl. Opt. (4)

Behav. Brain Res. (1)

T. Li, Q. Luo, and H. Gong, “Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy,” Behav. Brain Res. 209, 148–153 (2010).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Blood Rev. (1)

W. G. Murphy, “The sex difference in haemoglobin levels in adults — Mechanisms, causes, and consequences,” Blood Rev. 28, 41–47 (2014).
[Crossref] [PubMed]

Br. J. Ind. Med. (1)

C. T. Davies and A. J. Sargeant, “Circadian variation in physiological responses to exercise on a stationary bicycle ergometer,” Br. J. Ind. Med. 32, 110–114 (1975).
[PubMed]

Brain Behav. Immun. (1)

A. M. Weinstein, M. W. Voss, R. S. Prakash, L. Chaddock, A. Szabo, S. M. White, T. R. Wojcicki, E. Mailey, E. McAuley, A. F. Kramer, and K. I. Erickson, “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain Behav. Immun. 26, 811–819 (2012).
[Crossref]

Brain Cogn. (1)

V. Labelle, L. Bosquet, S. Mekary, and L. Bherer, “Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level,” Brain Cogn. 81, 10–17 (2013).
[Crossref]

Cereb. Cortex (1)

H. Lu, F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng, B. Flicker, A. C. Hebrank, J. Uh, and D. C. Park, “Alterations in cerebral metabolic rate and blood supply across the adult lifespan,” Cereb. Cortex 21, 1426–1434 (2011).
[Crossref]

Clin. Interv. Aging (1)

N. J. Kirk-Sanchez and E. L. McGough, “Physical exercise and cognitive performance in the elderly: current perspectives,” Clin. Interv. Aging 9, 51–62 (2014).
[PubMed]

Compr. Physiol. (1)

M. H. Laughlin, M. J. Davis, N. H. Secher, J. J. van Lieshout, A. A. Arce-Esquivel, G. H. Simmons, S. B. Bender, J. Padilla, R. J. Bache, D. Merkus, and D. J. Duncker, “Peripheral circulation,” Compr. Physiol. 2, 321–447 (2012).
[PubMed]

Eur. J. Appl. Physiol. (3)

T. Rupp, R. Thomas, S. Perrey, and P. Stephane, “Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise,” Eur. J. Appl. Physiol. 102, 153–163 (2008).

S. Mekari, S. Fraser, L. Bosquet, C. Bonnéry, V. Labelle, P. Pouliot, F. Lesage, and L. Bherer, “The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults,” Eur. J. Appl. Physiol. 191–9 (2015).

T. Miyazawa, M. Horiuchi, H. Komine, J. Sugawara, P. J. Fadel, and S. Ogoh, “Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise,” Eur. J. Appl. Physiol. 113, 2841–2848 (2013).
[Crossref] [PubMed]

Exerc. Sport Sci. Rev. (1)

W. Schmidt and N. Prommer, “Impact of alterations in total hemoglobin mass on VO 2max,” Exerc. Sport Sci. Rev. 38, 68–75 (2010).
[Crossref] [PubMed]

Exp. Brain Res. (1)

R. Jung, M. Moser, S. Baucsek, S. Dern, and S. Schneider, “Activation patterns of different brain areas during incremental exercise measured by near-infrared spectroscopy,” Exp. Brain Res. 233, 1175–1180 (2015).
[Crossref] [PubMed]

Front. Hum. Neurosci. (1)

O. Dupuy, C. J. Gauthier, S. A. Fraser, L. Desjardins-Crépeau, M. Desjardins, S. Mekary, F. Lesage, R. D. Hoge, P. Pouliot, and L. Bherer, “Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women,” Front. Hum. Neurosci. 9, 66 (2015).
[Crossref] [PubMed]

Front. Physiol. (1)

H. Mairbäurl, “Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells,” Front. Physiol. 4, 332 (2013).
[Crossref] [PubMed]

Gerontology (1)

L. Li, S. Mac-Mary, J.-M. Sainthillier, S. Nouveau, O. de Lacharriere, and P. Humbert, “Age-Related Changes of the Cutaneous Microcirculation in vivo,” Gerontology 52, 142–153 (2006).
[Crossref] [PubMed]

J. Aging. Res. (1)

L. Bherer, K. I. Erickson, and T. Liu-Ambrose, “A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults,” J. Aging. Res. 2013, 1–8 (2013).

J. Appl. Physiol. (3)

G. Hellström, W. Fischer-Colbrie, N. G. Wahlgren, and T. Jogestrand, “Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise,” J. Appl. Physiol. 81, 413–418 (1996).
[PubMed]

C. H. E. Imray, S. D. Myers, K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, S. Harris, P. Collins, and A. D. Wright, “Effect of exercise on cerebral perfusion in humans at high altitude,” J. Appl. Physiol. 99, 699–706 (2005).
[Crossref] [PubMed]

A. W. Subudhi, A. C. Dimmen, and R. C. Roach, “Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise,” J. Appl. Physiol. 103, 177–183 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

C. Bonnéry, P.-O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt. 17, 056002 (2012).
[Crossref] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13, 054019 (2008).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

G. Wagner, M. Herbsleb, F. de la Cruz, A. Schumann, F. Brünner, C. Schachtzabel, A. Gussew, C. Puta, S. Smesny, H. W. Gabriel, J. R. Reichenbach, and K.-J. Bär, “Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial,” J. Cereb. Blood Flow Metab. 35, 1570–1578 (2015).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Physiol. (Lond.) (3)

J. González-Alonso, M. K. Dalsgaard, T. Osada, S. Volianitis, E. A. Dawson, C. C. Yoshiga, and N. H. Secher, “Brain and central haemodynamics and oxygenation during maximal exercise in humans,” J. Physiol. (Lond.) 557, 331–342 (2004).
[Crossref]

K. Sato, S. Ogoh, A. Hirasawa, A. Oue, and T. Sadamoto, “The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans,” J. Physiol. (Lond.) 589, 2847–2856 (2011).
[Crossref]

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” J. Physiol. (Lond.) 589, 4027–4039 (2011).
[Crossref]

J. Sport. Exerc. Psychol. (1)

P. Ekkekakis, “Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy,” J. Sport. Exerc. Psychol. 31, 505–553 (2009).
[Crossref] [PubMed]

J. Sports Med. Phys. Fitness (1)

K. Shibuya, J. Tanaka, N. Kuboyama, S. Murai, and T. Ogaki, “Cerebral cortex activity during supramaximal exhaustive exercise,” J. Sports Med. Phys. Fitness 44, 215–219 (2004).
[PubMed]

Med. Sci. Sports Exerc. (1)

T. D. Noakes, “Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal,” Med. Sci. Sports Exerc. 30, 1381–1398 (1998).
[PubMed]

Microvasc. Res. (1)

H. N. Mayrovitz and M. B. Regan, “Gender differences in facial skin blood perfusion during basal and heated conditions determined by laser Doppler flowmetry,” Microvasc. Res. 45, 211–218 (1993).
[Crossref] [PubMed]

Neurobiol. Aging (1)

K. I. Erickson, R. L. Leckie, and A. M. Weinstein, “Physical activity, fitness, and gray matter volume,” Neurobiol. Aging 35Suppl 2, S20–S28 (2014).
[Crossref] [PubMed]

Neuroimage (11)

H. Boecker and A. Drzezga, “A perspective on the future role of brain pet imaging in exercise science,” Neuroimage 131, 73–80 (2016).
[Crossref]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56, 1362–1371 (2011).
[Crossref] [PubMed]

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, A. Z. Snyder, H. Dehghani, and J. P. Culver, “A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping,” Neuroimage 61, 1120–1128 (2012).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85Pt 1, 28–50 (2014).
[Crossref]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29, 697–705 (2006).
[Crossref]

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

N. Jausovec and K. Jausovec, “Do women see things differently than men do?”; Neuroimage 45, 198–207 (2009).
[Crossref]

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref] [PubMed]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage 59, 3933–3940 (2012).
[Crossref]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23Suppl 1, S275–S288 (2004).
[Crossref] [PubMed]

Neurosci. Res. (1)

A. Timinkul, M. Kato, T. Omori, C. C. Deocaris, A. Ito, T. Kizuka, Y. Sakairi, T. Nishijima, T. Asada, and H. Soya, “Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study,” Neurosci. Res. 61, 242–248 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Pediatr. Exerc. Sci. (1)

G. Ganesan, S. Y. Leu, A. Cerussi, B. Tromberg, D. M. Cooper, and P. Galassetti, “Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy,” Pediatr. Exerc. Sci. 28, 275–285 (2016).
[Crossref]

Pediatr. Res. (1)

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58, 568–573 (2005).
[Crossref] [PubMed]

Physiology (Bethesda) (1)

I. Heinonen, K. K. Kalliokoski, J. C. Hannukainen, D. J. Duncker, P. Nuutila, and J. Knuuti, “Organ-specific physiological responses to acute physical exercise and long-term training in humans,” Physiology (Bethesda) 29, 421–436 (2014).

PLoS ONE (1)

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue,” PLoS ONE 8, e64095 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

C. C. Sherwood, A. D. Gordon, J. S. Allen, K. A. Phillips, J. M. Erwin, P. R. Hof, and W. D. Hopkins, “Aging of the cerebral cortex differs between humans and chimpanzees,” Proc. Natl. Acad. Sci. USA 108, 13029–13034 (2011).
[Crossref] [PubMed]

Prog. Neurobiol. (2)

K. Ide and N. H. Secher, “Cerebral blood flow and metabolism during exercise,” Prog. Neurobiol. 61, 397–414 (2000).
[Crossref] [PubMed]

C. R. Rooks, N. J. Thom, K. K. McCully, and R. K. Dishman, “Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review,” Prog. Neurobiol. 92, 134–150 (2010).
[Crossref] [PubMed]

Respir. Physiol. Neurobiol. (2)

K. Oussaidene, F. Prieur, S. Tagougui, A. Abaidia, R. Matran, and P. Mucci, “Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects,” Respir. Physiol. Neurobiol. 205, 53–60 (2015).
[Crossref]

K.-I. Shibuya, J. Tanaka, N. Kuboyama, and T. Ogaki, “Cerebral oxygenation during intermittent supramaximal exercise,” Respir. Physiol. Neurobiol. 140, 165–172 (2004).
[Crossref] [PubMed]

Science (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref] [PubMed]

Other (1)

P.-O. Leclerc, “Développement d’un système de spectroscopie infrarouge résolue temporellement pour la quantification des concentrations d’hémoglobine cérébrale,” Master’s thesis, Institut de Génie Biomédical, Université de Montréal (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic representation of the TD-NIRS probe. A fiber coupler light guide was centered and light was emitted at 690, 760, 810 and 840 nm. Four single photon counting avalanche photodiodes (D1 to D4) were placed at 10, 15, 25 and 30 mm.
Fig. 2
Fig. 2 Boxplots of extra-cerebral and cerebral (A) oxy- (HbO2), (B) deoxy- (HbR), (C) total hemoglobin (HbT), and (D) hemoglobin oxygen saturation (SO2) in subjects (ntotal = 15) at rest, 40% and 80% peak power output (PPO) exercise intensity. On each box, the central mark is the median, the black square is the mean, the edges of the box are the 25th and 75th percentiles, and the whiskers show the standard error of the mean. Empty circles denote outliers and significant statistical comparisons are indicated with their corresponding p-value.
Fig. 3
Fig. 3 Pearson correlation coefficients (R) and corresponding p-values between extra-cerebral (A)–(C) and cerebral (D)–(F) hemoglobin concentrations, and subject’s peak power output (PPO) at rest, 40% and 80% intensity exercise. Oxy- (HbO2, red circles), deoxy-(HbR, green squares) and total hemoglobin (HbT, blue triangles) are displayed with the corresponding linear fits (colored solid lines).
Fig. 4
Fig. 4 Boxplots of extra-cerebral and cerebral (A) oxy- (HbO2), (B) deoxy- (HbR), (C) total hemoglobin (HbT), and (D) hemoglobin oxygen saturation (SO2) in men (M, nmen = 6) and women (W, nwomen = 9) at rest, 40% and 80% peak power output (PPO) exercise intensity. On each box, the central mark is the median, the black square is the mean, the edges of the box are the 25th and 75th percentiles, and the whiskers show the standard error of the mean. Empty circles denote outliers and significant statistical comparisons are indicated with their corresponding p-value.

Tables (5)

Tables Icon

Table 1 Demographics, physiological and exercise parameters in subjects.

Tables Icon

Table 2 Extra-cerebral vs. cerebral contributions (p-value) in oxy- (HbO2), deoxy- (HbR), total hemoglobin (HbT) and hemoglobin oxygen saturation (SO2) values compared at rest, 40% and 80% intensity exercise.

Tables Icon

Table 3 Relative differences (%) between averaged hemoglobin concentrations (oxy-(HbO2), deoxy- (HbR) and total hemoglobin (HbT)) recovered with the homogeneous fit and the two-layer fitting model (cerebral layer contribution) for all exercise conditions. p-value is provided for each comparison.

Tables Icon

Table 4 Statistical comparisons (p-value) of relative changes in hemoglobin concentrations between cerebral and extra-cerebral tissue. Comparisons are provided for relative changes in oxy- (ΔHbO2), deoxy- (ΔHbR), total hemoglobin (ΔHbT) and hemoglobin oxygen saturation (ΔSO2).

Tables Icon

Table 5 Statistical comparisons (p-value) between exercise conditions with hemoglobin concentrations retrieved using the homogeneous model for oxy- (HbO2), deoxy- (HbR), total hemoglobin (HbT) and hemoglobin oxygen saturation (SO2) values.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ 1 ( z , s ) = sinh [ α 1 ( z b + z 0 ) ] D 1 α 1 × D 1 α 1 cosh [ α 1 ( z ) ] + D 2 α 2 sinh [ α 1 ( z ) ] D 1 α 1 cosh [ α 1 ( + z b ) ] + D 2 α 2 sinh [ α 1 ( + z b ) ] sinh [ α 1 ( z 0 z ) ] D 1 α 1 , 0 z < z 0
φ 2 ( z , s ) = sinh [ α 1 ( z b + z 0 ) ] exp [ α 2 ( z ) ] D 1 α 1 cosh [ α 1 ( + z b ) ] + D 2 α 2 sinh [ α 1 ( + z b ) ] , z > z 0
[ μ a ( λ 1 ) μ a ( λ 2 ) μ a ( λ 3 ) μ a ( λ 4 ) ] = [ ξ H b O 2 ( λ 1 ) ξ H b R ( λ 1 ) ξ H 2 O ( λ 1 ) ξ H b O 2 ( λ 2 ) ξ H b R ( λ 2 ) ξ H 2 O ( λ 2 ) ξ H b O 2 ( λ 3 ) ξ H b R ( λ 3 ) ξ H 2 O ( λ 3 ) ξ H b O 2 ( λ 4 ) ξ H b R ( λ 4 ) ξ H 2 O ( λ 4 ) ] [ H b O 2 H b R H 2 O ]

Metrics