Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of spectral acquisition technique and wood anisotropy on the statistics of predictive near infrared–based models for wood density

Not Accessible

Your library or personal account may give you access

Abstract

Wood density is an important criterion for material classification, as it is directly related to quality of wood for structural use. Several studies have shown promising results for the estimation of wood density by near infrared spectroscopy. However, the optimal conditions for spectral acquisition need to be investigated in order to develop predictive models and to understand how anisotropy and surface roughness affect the statistics of predictive partial least square regression models. The aim of this study was to evaluate how the spectral acquisition technique, wood surface, and the surface quality influence the ability of partial least square–based models to estimate wood density. Near infrared spectra were recorded using an integrating sphere and fiber-optic probe on the tangential, radial, and transverse surfaces machined by circular and band saws in 278 wood specimens of six-year-old Eucalyptus hybrids. The basic density values determined by the conventional method were then correlated with near infrared spectra acquired using an integrating sphere and fiber-optic probe on the wood surfaces by means of partial least square regressions. The most promising models for predicting wood density were generated from near infrared spectra obtained from the transverse surface machined by the bandsaw, via an integrating sphere (rp2=0.87, RMSEP = 23 kg m−3 and RPD = 3.0) as well as for the optic fiber (rp2=0.78, RMSEP = 35 kg m−3 and RPD = 2.1). Surface quality affected the spectral information and robustness of predictive models with a rougher surface, caused by band sawing, showing better results.

© 2018 The Author(s)

PDF Article
More Like This
Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Lili Xu, Jinming Liu, Chunqi Wang, Zhijiang Li, and Dongjie Zhang
Appl. Opt. 62(11) 2756-2765 (2023)

Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

Yongni Shao, Yong He, and Jingyuan Mao
Appl. Opt. 46(25) 6391-6396 (2007)

Optical properties of drying wood studied by time-resolved near-infrared spectroscopy

Keiji Konagaya, Tetsuya Inagaki, Ryunosuke Kitamura, and Satoru Tsuchikawa
Opt. Express 24(9) 9561-9573 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.