Abstract

A nonnegative least squares classifier was proposed in this paper to classify near infrared spectral data. The method used near infrared spectral data of training samples to make up a data dictionary of the sparse representation. By adopting the nonnegative least squares sparse coding algorithm, the near infrared spectral data of test samples would be expressed via the sparsest linear combinations of the dictionary. The regression residual of the test sample of each class was computed, and finally it was assigned to the class with the minimum residual. The method was compared with the other classifying approaches, including the well-performing principal component analysis–linear discriminant analysis and principal component analysis–particle swarm optimization–support vector machine. Experimental results showed that the approach was faster and generally achieved a better prediction performance over compared methods. The method can accurately recognize different classes of tobacco leaves and it provides a new technology for quality evaluation of tobacco leaf in its purchasing activities.

© 2018 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription