Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 25,
  • Issue 3,
  • pp. 188-195
  • (2017)

Rapid determination of phytic acid content in cottonseed meal via near infrared spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

A near infrared calibration model with higher precision and better stability was constructed in the present study, using 280 cottonseed samples. The reference phytic acid contents were determined by high-performance ion chromatography. A combination of Savitzky–Golay smoothing, standard normal variate, and the first derivative was chosen as the spectral pre-treatment method. Monte Carlo uninformative variable elimination was proposed for spectral variable selection. The regression methods of partial least squares, least squares support vector machines, and weighted least squares support vector machines were developed for the calibration model. The optimal near infrared calibration model for phytic acid contents in the cottonseed meals was least squares support vector machines, with r2 = 0.97, RPD = 5.53, RMSECV = 0.06%, and RMSEP = 0.05%. This robust method can replace the traditional method of phytic acid determination in cottonseed meals.

© 2017 The Author(s)

PDF Article
More Like This
Nondestructive determination of SSC in an apple by using a portable near-infrared spectroscopy system

Yizhe Zhang, Jipeng Huang, Qiulei Zhang, Jinwei Liu, Yanli Meng, and Yan Yu
Appl. Opt. 61(12) 3419-3428 (2022)

Rapid detection of talc content in flour based on near-infrared spectroscopy combined with feature wavelength selection

Changhao Bao, Changhao Zeng, Jinming Liu, and Dongjie Zhang
Appl. Opt. 61(19) 5790-5798 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.