Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect

Not Accessible

Your library or personal account may give you access

Abstract

We propose a highly efficient graphene-on-gap modulator (GOGM) by employing the hybrid plasmonic effect, whose modulation efficiency (up to 1.23 dB/μm after optimization) is 12-fold larger than that of the present graphene-on-silicon modulator (0.1dB/μm). The proposed modulator has the advantage of a short modulation length of 3.6μm, a relatively low insertion loss of 0.32dB, and a larger modulation bandwidth of 0.48THz. The physical insight is investigated, showing that both the slow light effect and the overlap between graphene and the mode field contribute. Moreover, an efficient taper coupler has been designed to convert the quasi-transverse electric mode of conventional silicon waveguide to the hybrid plasmonic mode of GOGM, with a high coupling efficiency of 91%. This Letter may promote the design of high-performance on-chip electro-optical modulators.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

24 April 2017: A correction was made to the author listing.


More Like This
Experimental demonstration of a graphene-based hybrid plasmonic modulator

Ran Hao, Jianyao Jiao, Xiliang Peng, Zheng Zhen, Rakhatbek Dagarbek, Yijun Zou, and Erping Li
Opt. Lett. 44(10) 2586-2589 (2019)

Graphene-based plasmonic modulator on a groove-structured metasurface

Yulin Wang, Tao Li, and Shining Zhu
Opt. Lett. 42(12) 2247-2250 (2017)

Slow light enabled high-modulation-depth graphene modulator with plasmonic metasurfaces

Tangxuan Ren and Lin Chen
Opt. Lett. 44(22) 5446-5449 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.