Abstract

In this paper, we propose a low-transmission-loss, high-speed, graphene-based electro-absorption modulator with a hybrid plasmonic waveguide at 1.55 μm. In the proposed device, double-layer graphene is placed on top of the horizontal hybrid plasmonic waveguide to enhance the light–graphene interaction. The adjustment of the in-plane permittivity of the anisotropy graphene causes a significant modulation of the absorption at the operating bandwidth of 0.4 THz, with modulation length of 8.5 μm and modulator footprint of 1.6  μm2. A taper silicon coupler is used for waveguide coupling, and 80% coupling efficiency is achieved. In addition, the modulation potential on a smaller footprint is further shown.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and analysis of a phase modulator based on a metal–polymer–silicon hybrid plasmonic waveguide

Xiaomeng Sun, Linjie Zhou, Xinwan Li, Zehua Hong, and Jianping Chen
Appl. Opt. 50(20) 3428-3434 (2011)

Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation

Longfang Ye, Kehan Sui, Yanhui Liu, Miao Zhang, and Qing Huo Liu
Opt. Express 26(12) 15935-15947 (2018)

Low-energy high-speed plasmonic enhanced modulator using graphene

Baohu Huang, Weibing Lu, Zhenguo Liu, and Siping Gao
Opt. Express 26(6) 7358-7367 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription