Abstract

In this work, we present an enhanced design for a Brillouin ring laser (BRL), which employs a double resonant cavity (DRC) with short fiber length, paired with a heterodyne-based wavelength-locking system, to be employed as a pump-probe source for Brillouin sensing. The enhanced source is compared to traditional long-cavity pump-probe source, showing a significantly lower relative intensity noise (~-145 dB/Hz in the whole 0–800 MHz range), a narrow linewidth (10 kHz), and large tunability features, resulting in an effective pump-probe source in BOTDA systems, with an excellent pump-probe frequency stability (~200 Hz), which is uncommon for fiber lasers. The enhanced source showed an improved signal-to-noise ratio (SNR) of about 22 dB with respect to standard BRL schemes, resulting in an improved temperature/strain resolution in BOTDA applications up to 5.5 dB, with respect to previous high-noise BRL designs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements

Dengwang Zhou, Yongkang Dong, Benzhang Wang, Taofei Jiang, Dexin Ba, Pengbai Xu, Hongying Zhang, Zhiwei Lu, and Hui Li
Opt. Express 25(3) 1889-1902 (2017)

Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods

Avi Motil, Roy Davidi, Raanan Hadar, and Moshe Tur
Opt. Express 25(19) 22206-22218 (2017)

A BOTDA with break interrogation function over 72 km sensing length

Junhui Hu, Xuping Zhang, Yuguo Yao, and Xiaodong Zhao
Opt. Express 21(1) 145-153 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Soto and L. Thévenaz, “Towards 1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157–9685 (2014).
  2. C. A. Galindez-Jamioy and J. M. Lopez-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 1–17 (2012).
    [Crossref]
  3. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [Crossref] [PubMed]
  4. M. Niklès, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [Crossref] [PubMed]
  5. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [Crossref] [PubMed]
  6. F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” Proc. SPIE 9634, 9634E (2015).
  7. D. Marini, L. Rossi, F. Bastianini, and G. Bolognini, “Enhanced-performance fibre Brillouin ring laser for Brillouin sensing applications,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper ThE71.
  8. Y. Liu, M. Zhang, J. Zhang, and Y. Wang, “Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator,” J. Lit. Technol. 35(9), 1744–1749 (2017).
    [Crossref]
  9. Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7(5), 1–9 (2015).
  10. Y. Liu, J. L. Yu, W. R. Wang, H. G. Pan, and E. Z. Yang, “Single longitudinal mode Brillouin fiber laser with cascaded ring Fabry–Pérot resonator,” IEEE Photonic Tech. L. 26(2), 169–172 (2014).
    [Crossref]
  11. Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow linewidth Brillouin fiber laser,” IEEE Photonic. Tech. L. 26(20), 2058–2061 (2014).
    [Crossref]
  12. D. Marini, M. Iuliano, F. Bastianini, and G. Bolognini, “BOTDA sensing employing a modified Brillouin fiber laser probe source,” J. Lightwave Technol. 36(4), 1131–1137 (2018).
    [Crossref]
  13. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
    [Crossref]
  14. A. Minardo, R. Bernini, and L. Zeni, “Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise,” J. Opt. 18(2), 025601 (2016).
    [Crossref]
  15. V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
    [Crossref]
  16. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982).
    [Crossref] [PubMed]
  17. M. Iuliano, D. Marini, F. Bastianini, and G. Bolognini, “BOTDA sensing system employing a tunable low-cost Brillouin fiber ring laser,” in Proceedings of Optical Fiber Sensors Conference (IEEE, 2017), pp. 1–4.
  18. V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, “A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,” Laser Phys. Lett. 10(1), 0151021 (2012).
  19. J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 963434 (2015).
    [Crossref]
  20. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  21. P. Nicati, K. Toyama, and H. J. Shaw, “Frequency Stability of a Brillouin Fiber Ring Laser,” J. Lit. Technol. 13(7), 1445–1451 (1995).
    [Crossref]
  22. P. Nicati, K. Toyama, S. Huang, and H. J. Shaw, “Frequency Pulling in a Brillouin Fiber Ring Laser,” IEEE Photonic. Tech. L. 6(7), 801–803 (1994).
    [Crossref]
  23. C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
    [Crossref]
  24. V. V. Spirin, C. A. López-Mercado, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Single cut technique for adjustment of doubly resonant Brillouin laser cavities,” Opt. Lett. 38(14), 2528–2530 (2013).
    [Crossref] [PubMed]
  25. S. Norcia, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, and R. Frey, “Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals,” Opt. Lett. 28(20), 1888–1890 (2003).
    [Crossref] [PubMed]
  26. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly Stable Low-Noise Brillouin Fiber Laser with Ultranarrow Spectral Linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
    [Crossref]
  27. D. Derickson, Fiber optic test and measurement (Prentice Hall, 1998).
  28. S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
    [Crossref] [PubMed]
  29. J. Geng and S. Jiang, “Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers,” Opt. Lett. 32(1), 11–13 (2007).
    [Crossref] [PubMed]
  30. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Actively stabilized Brillouin fiber laser with high output power and low noise,” in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (IEEE, 2006).
    [Crossref]
  31. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lit. Technol. 13(7), 1296–1302 (1995).
    [Crossref]

2018 (1)

2017 (1)

Y. Liu, M. Zhang, J. Zhang, and Y. Wang, “Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator,” J. Lit. Technol. 35(9), 1744–1749 (2017).
[Crossref]

2016 (1)

A. Minardo, R. Bernini, and L. Zeni, “Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise,” J. Opt. 18(2), 025601 (2016).
[Crossref]

2015 (3)

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 963434 (2015).
[Crossref]

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7(5), 1–9 (2015).

F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” Proc. SPIE 9634, 9634E (2015).

2014 (4)

C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
[Crossref]

Y. Liu, J. L. Yu, W. R. Wang, H. G. Pan, and E. Z. Yang, “Single longitudinal mode Brillouin fiber laser with cascaded ring Fabry–Pérot resonator,” IEEE Photonic Tech. L. 26(2), 169–172 (2014).
[Crossref]

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow linewidth Brillouin fiber laser,” IEEE Photonic. Tech. L. 26(20), 2058–2061 (2014).
[Crossref]

M. A. Soto and L. Thévenaz, “Towards 1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157–9685 (2014).

2013 (2)

2012 (3)

V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, “A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,” Laser Phys. Lett. 10(1), 0151021 (2012).

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

C. A. Galindez-Jamioy and J. M. Lopez-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 1–17 (2012).
[Crossref]

2010 (1)

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

2007 (1)

2006 (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly Stable Low-Noise Brillouin Fiber Laser with Ultranarrow Spectral Linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

2003 (1)

2000 (1)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

1996 (1)

1995 (2)

P. Nicati, K. Toyama, and H. J. Shaw, “Frequency Stability of a Brillouin Fiber Ring Laser,” J. Lit. Technol. 13(7), 1445–1451 (1995).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lit. Technol. 13(7), 1296–1302 (1995).
[Crossref]

1994 (1)

P. Nicati, K. Toyama, S. Huang, and H. J. Shaw, “Frequency Pulling in a Brillouin Fiber Ring Laser,” IEEE Photonic. Tech. L. 6(7), 801–803 (1994).
[Crossref]

1990 (2)

1982 (1)

Bao, X.

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7(5), 1–9 (2015).

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow linewidth Brillouin fiber laser,” IEEE Photonic. Tech. L. 26(20), 2058–2061 (2014).
[Crossref]

Bastianini, F.

D. Marini, M. Iuliano, F. Bastianini, and G. Bolognini, “BOTDA sensing employing a modified Brillouin fiber laser probe source,” J. Lightwave Technol. 36(4), 1131–1137 (2018).
[Crossref]

F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” Proc. SPIE 9634, 9634E (2015).

M. Iuliano, D. Marini, F. Bastianini, and G. Bolognini, “BOTDA sensing system employing a tunable low-cost Brillouin fiber ring laser,” in Proceedings of Optical Fiber Sensors Conference (IEEE, 2017), pp. 1–4.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise,” J. Opt. 18(2), 025601 (2016).
[Crossref]

Blake, M.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly Stable Low-Noise Brillouin Fiber Laser with Ultranarrow Spectral Linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Actively stabilized Brillouin fiber laser with high output power and low noise,” in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (IEEE, 2006).
[Crossref]

Bolognini, G.

D. Marini, M. Iuliano, F. Bastianini, and G. Bolognini, “BOTDA sensing employing a modified Brillouin fiber laser probe source,” J. Lightwave Technol. 36(4), 1131–1137 (2018).
[Crossref]

F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” Proc. SPIE 9634, 9634E (2015).

M. Iuliano, D. Marini, F. Bastianini, and G. Bolognini, “BOTDA sensing system employing a tunable low-cost Brillouin fiber ring laser,” in Proceedings of Optical Fiber Sensors Conference (IEEE, 2017), pp. 1–4.

Boppart, S. A.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Chen, L.

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow linewidth Brillouin fiber laser,” IEEE Photonic. Tech. L. 26(20), 2058–2061 (2014).
[Crossref]

Chodorow, M.

Debut, A.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Dolfi, D.

Fotiadi, A. A.

C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
[Crossref]

V. V. Spirin, C. A. López-Mercado, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Single cut technique for adjustment of doubly resonant Brillouin laser cavities,” Opt. Lett. 38(14), 2528–2530 (2013).
[Crossref] [PubMed]

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, “A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,” Laser Phys. Lett. 10(1), 0151021 (2012).

Frey, R.

Galindez-Jamioy, C. A.

C. A. Galindez-Jamioy and J. M. Lopez-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 1–17 (2012).
[Crossref]

Geng, J.

J. Geng and S. Jiang, “Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers,” Opt. Lett. 32(1), 11–13 (2007).
[Crossref] [PubMed]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly Stable Low-Noise Brillouin Fiber Laser with Ultranarrow Spectral Linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Actively stabilized Brillouin fiber laser with high output power and low noise,” in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (IEEE, 2006).
[Crossref]

Horiguchi, T.

Huang, S.

P. Nicati, K. Toyama, S. Huang, and H. J. Shaw, “Frequency Pulling in a Brillouin Fiber Ring Laser,” IEEE Photonic. Tech. L. 6(7), 801–803 (1994).
[Crossref]

Huignard, J.-P.

Iuliano, M.

D. Marini, M. Iuliano, F. Bastianini, and G. Bolognini, “BOTDA sensing employing a modified Brillouin fiber laser probe source,” J. Lightwave Technol. 36(4), 1131–1137 (2018).
[Crossref]

M. Iuliano, D. Marini, F. Bastianini, and G. Bolognini, “BOTDA sensing system employing a tunable low-cost Brillouin fiber ring laser,” in Proceedings of Optical Fiber Sensors Conference (IEEE, 2017), pp. 1–4.

Jiang, S.

J. Geng and S. Jiang, “Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers,” Opt. Lett. 32(1), 11–13 (2007).
[Crossref] [PubMed]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly Stable Low-Noise Brillouin Fiber Laser with Ultranarrow Spectral Linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Actively stabilized Brillouin fiber laser with high output power and low noise,” in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (IEEE, 2006).
[Crossref]

Jung, W.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Kablukov, S. I.

C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
[Crossref]

V. V. Spirin, C. A. López-Mercado, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Single cut technique for adjustment of doubly resonant Brillouin laser cavities,” Opt. Lett. 38(14), 2528–2530 (2013).
[Crossref] [PubMed]

Kinet, D.

V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, “A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,” Laser Phys. Lett. 10(1), 0151021 (2012).

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lit. Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kurashima, T.

Li, L.

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7(5), 1–9 (2015).

Li, Y.

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow linewidth Brillouin fiber laser,” IEEE Photonic. Tech. L. 26(20), 2058–2061 (2014).
[Crossref]

Liu, Y.

Y. Liu, M. Zhang, J. Zhang, and Y. Wang, “Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator,” J. Lit. Technol. 35(9), 1744–1749 (2017).
[Crossref]

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7(5), 1–9 (2015).

Y. Liu, J. L. Yu, W. R. Wang, H. G. Pan, and E. Z. Yang, “Single longitudinal mode Brillouin fiber laser with cascaded ring Fabry–Pérot resonator,” IEEE Photonic Tech. L. 26(2), 169–172 (2014).
[Crossref]

Lopez-Higuera, J. M.

C. A. Galindez-Jamioy and J. M. Lopez-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 1–17 (2012).
[Crossref]

López-Mercado, C. A.

C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
[Crossref]

V. V. Spirin, C. A. López-Mercado, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Single cut technique for adjustment of doubly resonant Brillouin laser cavities,” Opt. Lett. 38(14), 2528–2530 (2013).
[Crossref] [PubMed]

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, “A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,” Laser Phys. Lett. 10(1), 0151021 (2012).

Marini, D.

D. Marini, M. Iuliano, F. Bastianini, and G. Bolognini, “BOTDA sensing employing a modified Brillouin fiber laser probe source,” J. Lightwave Technol. 36(4), 1131–1137 (2018).
[Crossref]

F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” Proc. SPIE 9634, 9634E (2015).

M. Iuliano, D. Marini, F. Bastianini, and G. Bolognini, “BOTDA sensing system employing a tunable low-cost Brillouin fiber ring laser,” in Proceedings of Optical Fiber Sensors Conference (IEEE, 2017), pp. 1–4.

Mégret, P.

C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
[Crossref]

V. V. Spirin, C. A. López-Mercado, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Single cut technique for adjustment of doubly resonant Brillouin laser cavities,” Opt. Lett. 38(14), 2528–2530 (2013).
[Crossref] [PubMed]

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, “A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,” Laser Phys. Lett. 10(1), 0151021 (2012).

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise,” J. Opt. 18(2), 025601 (2016).
[Crossref]

Nicati, P.

P. Nicati, K. Toyama, and H. J. Shaw, “Frequency Stability of a Brillouin Fiber Ring Laser,” J. Lit. Technol. 13(7), 1445–1451 (1995).
[Crossref]

P. Nicati, K. Toyama, S. Huang, and H. J. Shaw, “Frequency Pulling in a Brillouin Fiber Ring Laser,” IEEE Photonic. Tech. L. 6(7), 801–803 (1994).
[Crossref]

Niklès, M.

Norcia, S.

Ou, Z.

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow linewidth Brillouin fiber laser,” IEEE Photonic. Tech. L. 26(20), 2058–2061 (2014).
[Crossref]

Pan, H. G.

Y. Liu, J. L. Yu, W. R. Wang, H. G. Pan, and E. Z. Yang, “Single longitudinal mode Brillouin fiber laser with cascaded ring Fabry–Pérot resonator,” IEEE Photonic Tech. L. 26(2), 169–172 (2014).
[Crossref]

Randoux, S.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Robert, P. A.

Saxena, B.

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow linewidth Brillouin fiber laser,” IEEE Photonic. Tech. L. 26(20), 2058–2061 (2014).
[Crossref]

Sharma, U.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Shaw, H. J.

P. Nicati, K. Toyama, and H. J. Shaw, “Frequency Stability of a Brillouin Fiber Ring Laser,” J. Lit. Technol. 13(7), 1445–1451 (1995).
[Crossref]

P. Nicati, K. Toyama, S. Huang, and H. J. Shaw, “Frequency Pulling in a Brillouin Fiber Ring Laser,” IEEE Photonic. Tech. L. 6(7), 801–803 (1994).
[Crossref]

L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982).
[Crossref] [PubMed]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lit. Technol. 13(7), 1296–1302 (1995).
[Crossref]

Shin, S.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Soto, M. A.

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 963434 (2015).
[Crossref]

M. A. Soto and L. Thévenaz, “Towards 1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157–9685 (2014).

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

Spirin, V. V.

C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
[Crossref]

V. V. Spirin, C. A. López-Mercado, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Single cut technique for adjustment of doubly resonant Brillouin laser cavities,” Opt. Lett. 38(14), 2528–2530 (2013).
[Crossref] [PubMed]

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, “A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,” Laser Phys. Lett. 10(1), 0151021 (2012).

Staines, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly Stable Low-Noise Brillouin Fiber Laser with Ultranarrow Spectral Linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Actively stabilized Brillouin fiber laser with high output power and low noise,” in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (IEEE, 2006).
[Crossref]

Stokes, L. F.

Tateda, M.

Thevenaz, L.

Thévenaz, L.

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 963434 (2015).
[Crossref]

M. A. Soto and L. Thévenaz, “Towards 1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157–9685 (2014).

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

Tonda-Goldstein, S.

Toyama, K.

P. Nicati, K. Toyama, and H. J. Shaw, “Frequency Stability of a Brillouin Fiber Ring Laser,” J. Lit. Technol. 13(7), 1445–1451 (1995).
[Crossref]

P. Nicati, K. Toyama, S. Huang, and H. J. Shaw, “Frequency Pulling in a Brillouin Fiber Ring Laser,” IEEE Photonic. Tech. L. 6(7), 801–803 (1994).
[Crossref]

Tu, H.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Urricelqui, J.

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 963434 (2015).
[Crossref]

Wang, P.

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7(5), 1–9 (2015).

Wang, W. R.

Y. Liu, J. L. Yu, W. R. Wang, H. G. Pan, and E. Z. Yang, “Single longitudinal mode Brillouin fiber laser with cascaded ring Fabry–Pérot resonator,” IEEE Photonic Tech. L. 26(2), 169–172 (2014).
[Crossref]

Wang, Y.

Y. Liu, M. Zhang, J. Zhang, and Y. Wang, “Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator,” J. Lit. Technol. 35(9), 1744–1749 (2017).
[Crossref]

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7(5), 1–9 (2015).

Wang, Z.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly Stable Low-Noise Brillouin Fiber Laser with Ultranarrow Spectral Linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Actively stabilized Brillouin fiber laser with high output power and low noise,” in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (IEEE, 2006).
[Crossref]

Yang, E. Z.

Y. Liu, J. L. Yu, W. R. Wang, H. G. Pan, and E. Z. Yang, “Single longitudinal mode Brillouin fiber laser with cascaded ring Fabry–Pérot resonator,” IEEE Photonic Tech. L. 26(2), 169–172 (2014).
[Crossref]

Yu, J. L.

Y. Liu, J. L. Yu, W. R. Wang, H. G. Pan, and E. Z. Yang, “Single longitudinal mode Brillouin fiber laser with cascaded ring Fabry–Pérot resonator,” IEEE Photonic Tech. L. 26(2), 169–172 (2014).
[Crossref]

Zemmouri, J.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise,” J. Opt. 18(2), 025601 (2016).
[Crossref]

Zhang, J.

Y. Liu, M. Zhang, J. Zhang, and Y. Wang, “Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator,” J. Lit. Technol. 35(9), 1744–1749 (2017).
[Crossref]

Zhang, M.

Y. Liu, M. Zhang, J. Zhang, and Y. Wang, “Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator,” J. Lit. Technol. 35(9), 1744–1749 (2017).
[Crossref]

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7(5), 1–9 (2015).

Zlobina, E. A.

C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
[Crossref]

V. V. Spirin, C. A. López-Mercado, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Single cut technique for adjustment of doubly resonant Brillouin laser cavities,” Opt. Lett. 38(14), 2528–2530 (2013).
[Crossref] [PubMed]

Zolotovskiy, I. O.

C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
[Crossref]

V. V. Spirin, C. A. López-Mercado, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Single cut technique for adjustment of doubly resonant Brillouin laser cavities,” Opt. Lett. 38(14), 2528–2530 (2013).
[Crossref] [PubMed]

V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, “A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,” Laser Phys. Lett. 10(1), 0151021 (2012).

Zong, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly Stable Low-Noise Brillouin Fiber Laser with Ultranarrow Spectral Linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Actively stabilized Brillouin fiber laser with high output power and low noise,” in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (IEEE, 2006).
[Crossref]

IEEE Photonic Tech. L. (1)

Y. Liu, J. L. Yu, W. R. Wang, H. G. Pan, and E. Z. Yang, “Single longitudinal mode Brillouin fiber laser with cascaded ring Fabry–Pérot resonator,” IEEE Photonic Tech. L. 26(2), 169–172 (2014).
[Crossref]

IEEE Photonic. Tech. L. (2)

Z. Ou, X. Bao, Y. Li, B. Saxena, and L. Chen, “Ultranarrow linewidth Brillouin fiber laser,” IEEE Photonic. Tech. L. 26(20), 2058–2061 (2014).
[Crossref]

P. Nicati, K. Toyama, S. Huang, and H. J. Shaw, “Frequency Pulling in a Brillouin Fiber Ring Laser,” IEEE Photonic. Tech. L. 6(7), 801–803 (1994).
[Crossref]

IEEE Photonics J. (1)

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7(5), 1–9 (2015).

IEEE Photonics Technol. Lett. (2)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly Stable Low-Noise Brillouin Fiber Laser with Ultranarrow Spectral Linewidth,” IEEE Photonics Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Lit. Technol. (3)

Y. Liu, M. Zhang, J. Zhang, and Y. Wang, “Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator,” J. Lit. Technol. 35(9), 1744–1749 (2017).
[Crossref]

P. Nicati, K. Toyama, and H. J. Shaw, “Frequency Stability of a Brillouin Fiber Ring Laser,” J. Lit. Technol. 13(7), 1445–1451 (1995).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lit. Technol. 13(7), 1296–1302 (1995).
[Crossref]

J. Opt. (1)

A. Minardo, R. Bernini, and L. Zeni, “Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise,” J. Opt. 18(2), 025601 (2016).
[Crossref]

J. Sens. (1)

C. A. Galindez-Jamioy and J. M. Lopez-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 1–17 (2012).
[Crossref]

Laser Phys. Lett. (2)

V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
[Crossref]

V. V. Spirin, C. A. López-Mercado, D. Kinet, P. Mégret, I. O. Zolotovskiy, and A. A. Fotiadi, “A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating,” Laser Phys. Lett. 10(1), 0151021 (2012).

Opt. Express (1)

Opt. Fiber Technol. (1)

C. A. López-Mercado, V. V. Spirin, S. I. Kablukov, E. A. Zlobina, I. O. Zolotovskiy, P. Mégret, and A. A. Fotiadi, “Accuracy of single-cut adjustment technique for double resonant Brillouin fiber lasers,” Opt. Fiber Technol. 20(3), 194–198 (2014).
[Crossref]

Opt. Lett. (7)

Phys. Rev. A (1)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Proc. SPIE (3)

F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” Proc. SPIE 9634, 9634E (2015).

J. Urricelqui, M. A. Soto, and L. Thévenaz, “Sources of noise in Brillouin optical time-domain analyzers,” Proc. SPIE 9634, 963434 (2015).
[Crossref]

M. A. Soto and L. Thévenaz, “Towards 1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157–9685 (2014).

Other (4)

M. Iuliano, D. Marini, F. Bastianini, and G. Bolognini, “BOTDA sensing system employing a tunable low-cost Brillouin fiber ring laser,” in Proceedings of Optical Fiber Sensors Conference (IEEE, 2017), pp. 1–4.

D. Marini, L. Rossi, F. Bastianini, and G. Bolognini, “Enhanced-performance fibre Brillouin ring laser for Brillouin sensing applications,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper ThE71.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Actively stabilized Brillouin fiber laser with high output power and low noise,” in Proceedings of Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (IEEE, 2006).
[Crossref]

D. Derickson, Fiber optic test and measurement (Prentice Hall, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Use of DRC-BRL (yellow) as dual pump-probe source in BOTDA system (a) and scheme of implemented doubly-resonant cavity Brillouin fiber ring laser (DRC-BRL) (b).
Fig. 2
Fig. 2 Mode hopping after changes in resonant modes in the cavity due to shifts in length.
Fig. 3
Fig. 3 BRL Stokes power as a function of DFB pump wavelength for a cavity length of 5 m (a) and doubly resonant wavelength peak separation versus cavity fiber length in DRC-BRL (b).
Fig. 4
Fig. 4 Scheme of implemented active wavelength locking technique for DRC-BRL.
Fig. 5
Fig. 5 Electrical spectrum of pump-probe beating for stabilized DRC-BRL with 10 ms (left) and 120 s (right) measurement time. The frequency range is centered at the local oscillator frequencies fLO 10.8602 GHz that is fed into the active wavelength-locking scheme. The y axis scale is 1dB/division (left) and 10 dB/division (right) and x axis scale is 1 kHz/division (left) and 2 kHz/division (right).
Fig. 6
Fig. 6 DRC-BRL linewidth obtained through delayed self-heterodyne technique.
Fig. 7
Fig. 7 Measured spectral RIN characteristics for the standard BRL, for λ-locked DRC-BRL and for pump DFB laser. Inset: RIN measurement for DRC-BRL in the 1-50 kHz frequency range.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

FSR= c nL
2n V a λ =kFSR=k c nL
λ L k = 1 k 2 n 2 V a c L
k= λ L k λ L k1 λ L k
ΔL= c λ L k 2 n 2 V a ( k λ LM j λ L k k )
Δ λ DRC k =( 1 k 1 k+1 ) 2 n 2 V a c L= 1 k(k+1) 2 n 2 V a c L
Δ ν DRC = cFSR 2n V A = c 2 2 n 2 V A 1 L
Δ ν S = Δ ν P 1+ πΔ ν B Γ
RIN(ω)= 1 P ¯ 2 δP(t)δP(t+τ) exp( iωτ )dτ
SNR= I S δ = I S δ th 2 + δ sh 2 + δ spsp 2 + δ sps 2 + δ RIN 2
δ ν B = Δ ν B 2 ( SNR ) 1 4
δT= δ ν B C T ν B ( t r ) δε= δ ν B C S ν B (0)

Metrics