Abstract

A Brillouin gain fluctuation elimination scheme based on a hybrid polarization pulling and pushing effect (HPPP) is proposed and experimentally demonstrated in a Golay-coded Brillouin optical time domain analysis (BOTDA) fiber sensor. The analysis reveals that, due to the non-negligible probe state of polarization (SOP) deviation caused by the polarization pulling or pushing effect, the effectiveness of eliminating Brillouin gain fluctuation by using polarization switch is significantly degraded. Nevertheless, when probe Stokes and anti-Stokes components separately interact with orthogonal polarization pumps, the SOP evolution of the probe Stokes component due to the polarization pulling is totally identical to the SOP evolution of the probe anti-Stokes component caused by the polarization pushing. Based on this characteristic of the SOP evolutions, a novel HPPP method is proposed to eliminate the gain fluctuation. Experimental results demonstrate that the gain fluctuation falls to one-eighth of that of the conventional gain-only scheme by using this proposed HPPP method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization division multiplexing pulse coding for eliminating the effect of polarization pulling in Golay-coded BOTDA fiber sensor

Yin Zhou, Lianshan Yan, Zonglei Li, Wei Pan, and Bin Luo
Opt. Express 26(15) 19686-19693 (2018)

Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers

Zhisheng Yang, Zonglei Li, Simon Zaslawski, Luc Thévenaz, and Marcelo A. Soto
Opt. Express 26(13) 16505-16523 (2018)

Overcoming EDFA slow transient effects in a combined Golay coding and coherent detection BOTDA sensor

Can Liu, Lianshan Yan, Zonglei Li, Yin Zhou, Xinpu Zhang, Wei Pan, and Bin Luo
Opt. Express 27(26) 38220-38228 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [Crossref]
  2. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref]
  3. A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
    [Crossref]
  4. H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
    [Crossref]
  5. S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
    [Crossref]
  6. M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
    [Crossref]
  7. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [Crossref]
  8. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref]
  9. A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Nonlocal effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
    [Crossref]
  10. A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
    [Crossref]
  11. M. A. Soto, G. Bolognini, and F. D. Pasquale, “Optimization of long range BOTDA sensors with high resolution using first-order bidirectional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
    [Crossref]
  12. J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
    [Crossref]
  13. A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photonics Technol. Lett. 26(4), 338–341 (2014).
    [Crossref]
  14. Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
    [Crossref]
  15. N. Guo, L. Wang, H. Wu, C. Jin, H. Y. Tam, and C. Lu, “Enhanced coherent BOTDA system without trace averaging,” J. Lightwave Technol. 36(4), 871–878 (2018).
    [Crossref]
  16. M. Farahani, M. Wylie, E. Castillo-Guerra, and B. Colpitts, “Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques,” J. Lightwave Technol. 30(8), 1134–1142 (2012).
    [Crossref]
  17. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fiber sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
    [Crossref]
  18. M. A. Soto, J. A. Ramırez, and L. Thévenaz, “Optimizing image denoising for long-range Brillouin distributed fiber sensing,” J. Lightwave Technol. 36(4), 1168–1177 (2018).
    [Crossref]
  19. S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of Fitting and Digital Filtering on Signal-to-Noise Ratio and Brillouin Frequency Shift Uncertainty of BOTDA Measurements,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper ThE27.
  20. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
    [Crossref]
  21. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
    [Crossref]
  22. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref]
  23. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [Crossref]
  24. M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
    [Crossref]
  25. M. S. D. B. Zan and T. Horiguchi, “A dual Golay complementary pair of sequences for improving the performance of phase-shift pulse BOTDA fiber sensor,” J. Lightwave Technol. 30(21), 3338–3356 (2012).
    [Crossref]
  26. M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).
    [Crossref]
  27. S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel Brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” J. Lightwave Technol. 33(12), 2623–2627 (2015).
    [Crossref]
  28. Z. Li, Z. Yang, L. Yan, M. A. Soto, and L. Thévenaz, “Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses,” Opt. Lett. 43(19), 4574–4577 (2018).
    [Crossref]
  29. Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers,” Opt. Express 26(13), 16505–16523 (2018).
    [Crossref]
  30. R. Liao, M. Tang, C. Zhao, H. Wu, S. Fu, D. Liu, and P. P. Shum, “Harnessing oversampling in correlation-coded OTDR,” Opt. Express 27(2), 1693–1705 (2019).
    [Crossref]
  31. M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [Crossref]
  32. K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
    [Crossref]
  33. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [Crossref]
  34. Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19(27), 25873–25880 (2011).
    [Crossref]
  35. M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
    [Crossref]
  36. Y. Zhou, L. S. Yan, Z. Li, W. Pan, and B. Luo, “Polarization division multiplexing pulse coding for eliminating the effect of polarization pulling in Golay-coded BOTDA fiber sensor,” Opt. Express 26(15), 19686–19693 (2018).
    [Crossref]
  37. Y. Zhou, L. S. Yan, Z. Li, X. P. Zhang, W. Pan, and B. Luo, “Hybrid polarization pulling and pushing effects for eliminating Brillouin gain fluctuation in Golay-coded BOTDA sensor,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2019), paper M2J.3.

2019 (1)

2018 (6)

2017 (1)

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

2016 (4)

2015 (4)

2014 (1)

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photonics Technol. Lett. 26(4), 338–341 (2014).
[Crossref]

2013 (3)

2012 (3)

2011 (4)

2010 (2)

2009 (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

2008 (1)

2006 (1)

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

1994 (1)

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

1989 (2)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Abe, K.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

Alem, M.

Angulo-Vinuesa, X.

Ba, D.

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

Bergman, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Bolognini, G.

Boot, A. J.

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Castillo-Guerra, E.

Chin, S.

Colpitts, B.

Deventer, M. O.

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Di Pasquale, F.

Domínguez-López, A.

Dong, Y.

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

Eyal, A.

Farahani, M.

Floch, S. L.

Foaleng, S. M.

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Fu, S.

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Gonzalez-Herraez, M.

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

González-Herráez, M.

Guo, N.

He, H.

Horiguchi, T.

M. S. D. B. Zan and T. Horiguchi, “A dual Golay complementary pair of sequences for improving the performance of phase-shift pulse BOTDA fiber sensor,” J. Lightwave Technol. 30(21), 3338–3356 (2012).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Hotate, K.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

Jiang, T.

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

Jin, C.

Le Floch, S.

Li, H.

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

Li, Z.

Liang, J.

Liao, R.

Lin, J.

Liu, D.

Llera, M.

Loayssa, A.

Lopez-Gil, A.

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

López-Gil, A.

A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Nonlocal effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
[Crossref]

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photonics Technol. Lett. 26(4), 338–341 (2014).
[Crossref]

Lu, C.

Luo, B.

Mafang, S. F.

Martín-López, S.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Motil, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Pan, W.

Pang, C.

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

Pasquale, F. D.

Primerov, N.

Ramirez, J. A.

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fiber sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref]

Rochat, E.

Sagues, M.

Sauser, F.

Shao, L.

Shmilovitch, Z.

Shum, P. P.

Sischka, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Song, K. Y.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

Soto, M. A.

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers,” Opt. Express 26(13), 16505–16523 (2018).
[Crossref]

Z. Li, Z. Yang, L. Yan, M. A. Soto, and L. Thévenaz, “Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses,” Opt. Lett. 43(19), 4574–4577 (2018).
[Crossref]

M. A. Soto, J. A. Ramırez, and L. Thévenaz, “Optimizing image denoising for long-range Brillouin distributed fiber sensing,” J. Lightwave Technol. 36(4), 1168–1177 (2018).
[Crossref]

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fiber sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref]

A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref]

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref]

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).
[Crossref]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
[Crossref]

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Optimization of long range BOTDA sensors with high resolution using first-order bidirectional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref]

S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of Fitting and Digital Filtering on Signal-to-Noise Ratio and Brillouin Frequency Shift Uncertainty of BOTDA Measurements,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper ThE27.

Taki, M.

Tam, H. Y.

Tang, M.

Tateda, M.

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Thevenaz, L.

Thévenaz, L.

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers,” Opt. Express 26(13), 16505–16523 (2018).
[Crossref]

Z. Li, Z. Yang, L. Yan, M. A. Soto, and L. Thévenaz, “Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses,” Opt. Lett. 43(19), 4574–4577 (2018).
[Crossref]

M. A. Soto, J. A. Ramırez, and L. Thévenaz, “Optimizing image denoising for long-range Brillouin distributed fiber sensing,” J. Lightwave Technol. 36(4), 1168–1177 (2018).
[Crossref]

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fiber sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref]

A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref]

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
[Crossref]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref]

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).
[Crossref]

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref]

S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of Fitting and Digital Filtering on Signal-to-Noise Ratio and Brillouin Frequency Shift Uncertainty of BOTDA Measurements,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper ThE27.

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Tur, M.

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19(27), 25873–25880 (2011).
[Crossref]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref]

Urricelqui, J.

Wang, B.

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

Wang, L.

Wu, H.

Wylie, M.

Xu, P.

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

Yan, L.

Yan, L. S.

Y. Zhou, L. S. Yan, Z. Li, W. Pan, and B. Luo, “Polarization division multiplexing pulse coding for eliminating the effect of polarization pulling in Golay-coded BOTDA fiber sensor,” Opt. Express 26(15), 19686–19693 (2018).
[Crossref]

Y. Zhou, L. S. Yan, Z. Li, X. P. Zhang, W. Pan, and B. Luo, “Hybrid polarization pulling and pushing effects for eliminating Brillouin gain fluctuation in Golay-coded BOTDA sensor,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2019), paper M2J.3.

Yang, Z.

Zadok, A.

Zan, M. S. D. B.

Zaslawski, S.

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers,” Opt. Express 26(13), 16505–16523 (2018).
[Crossref]

S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of Fitting and Digital Filtering on Signal-to-Noise Ratio and Brillouin Frequency Shift Uncertainty of BOTDA Measurements,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper ThE27.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Zhang, H.

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

Zhang, X. P.

Y. Zhou, L. S. Yan, Z. Li, X. P. Zhang, W. Pan, and B. Luo, “Hybrid polarization pulling and pushing effects for eliminating Brillouin gain fluctuation in Golay-coded BOTDA sensor,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2019), paper M2J.3.

Zhang, Y.

Zhao, C.

Zhou, D.

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

Zhou, Y.

Y. Zhou, L. S. Yan, Z. Li, W. Pan, and B. Luo, “Polarization division multiplexing pulse coding for eliminating the effect of polarization pulling in Golay-coded BOTDA fiber sensor,” Opt. Express 26(15), 19686–19693 (2018).
[Crossref]

Y. Zhou, L. S. Yan, Z. Li, X. P. Zhang, W. Pan, and B. Luo, “Hybrid polarization pulling and pushing effects for eliminating Brillouin gain fluctuation in Golay-coded BOTDA sensor,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2019), paper M2J.3.

Zilka, E.

Appl. Sci. (1)

H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, D. Ba, H. Li, and Y. Dong, “Recent progress in fast distributed Brillouin optical fiber sensing,” Appl. Sci. 8(10), 1820 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photonics Technol. Lett. 26(4), 338–341 (2014).
[Crossref]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photonics Technol. Lett. 18(24), 2653–2655 (2006).
[Crossref]

IEEE Sens. J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

J. Lightwave Technol. (8)

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long-range complementary correlation optical time-domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

M. O. Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

M. Farahani, M. Wylie, E. Castillo-Guerra, and B. Colpitts, “Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques,” J. Lightwave Technol. 30(8), 1134–1142 (2012).
[Crossref]

M. S. D. B. Zan and T. Horiguchi, “A dual Golay complementary pair of sequences for improving the performance of phase-shift pulse BOTDA fiber sensor,” J. Lightwave Technol. 30(21), 3338–3356 (2012).
[Crossref]

S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel Brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” J. Lightwave Technol. 33(12), 2623–2627 (2015).
[Crossref]

M. A. Soto, J. A. Ramırez, and L. Thévenaz, “Optimizing image denoising for long-range Brillouin distributed fiber sensing,” J. Lightwave Technol. 36(4), 1168–1177 (2018).
[Crossref]

N. Guo, L. Wang, H. Wu, C. Jin, H. Y. Tam, and C. Lu, “Enhanced coherent BOTDA system without trace averaging,” J. Lightwave Technol. 36(4), 871–878 (2018).
[Crossref]

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fiber sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref]

Opt. Express (16)

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
[Crossref]

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Optimization of long range BOTDA sensors with high resolution using first-order bidirectional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref]

Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19(27), 25873–25880 (2011).
[Crossref]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
[Crossref]

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers,” Opt. Express 26(13), 16505–16523 (2018).
[Crossref]

Y. Zhou, L. S. Yan, Z. Li, W. Pan, and B. Luo, “Polarization division multiplexing pulse coding for eliminating the effect of polarization pulling in Golay-coded BOTDA fiber sensor,” Opt. Express 26(15), 19686–19693 (2018).
[Crossref]

R. Liao, M. Tang, C. Zhao, H. Wu, S. Fu, D. Liu, and P. P. Shum, “Harnessing oversampling in correlation-coded OTDR,” Opt. Express 27(2), 1693–1705 (2019).
[Crossref]

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express 23(23), 29514–29532 (2015).
[Crossref]

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
[Crossref]

Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
[Crossref]

A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref]

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref]

A. Domínguez-López, X. Angulo-Vinuesa, A. López-Gil, S. Martín-López, and M. González-Herráez, “Nonlocal effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
[Crossref]

Opt. Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (2)

M. A. Soto, M. Tur, A. Lopez-Gil, M. Gonzalez-Herraez, and L. Thévenaz, “Polarization pulling in Brillouin optical time-domain analyzers,” Proc. SPIE 10323, 103239L (2017).
[Crossref]

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

Other (2)

S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of Fitting and Digital Filtering on Signal-to-Noise Ratio and Brillouin Frequency Shift Uncertainty of BOTDA Measurements,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper ThE27.

Y. Zhou, L. S. Yan, Z. Li, X. P. Zhang, W. Pan, and B. Luo, “Hybrid polarization pulling and pushing effects for eliminating Brillouin gain fluctuation in Golay-coded BOTDA sensor,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2019), paper M2J.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic illustration of the Brillouin gain fluctuation caused by (a) polarization pulling and (b) polarization pushing effects; (c) Brillouin gain fluctuation elimination based on the HPPP method. D: detection, including photoelectric detection, analog-to-digital conversion and logarithmic normalization. P: processing, including superposing and Golay-decoding. Linear Ac. GB: linear accumulated Brillouin gain; GB: Brillouin gain.
Fig. 2.
Fig. 2. Experimental setup of the proposed scheme. ECL: external cavity laser; EYDFA: erbium-ytterbium co-doped fiber amplifier; AFG: arbitrary function generator; AOM: acousto-optic modulator; PSW: polarization switch; FUT: fiber under test; PC: polarization controller; EOM: electro-optical modulator; MG: microwave generator; EDFA: erbium-doped fiber amplifier; WDM: wavelength division multiplexing demultiplexer; OSW: optical switch; PD: photodiode; OSC: oscilloscope; Ac. GB: accumulated Brillouin gain; Ac. LB: accumulated Brillouin loss.
Fig. 3.
Fig. 3. Comparisons of (a) the decode Brillouin gain around the BFS and (b) evolution of Brillouin gain fluctuation along the sensing range when different schemes are used. The details of the decode Brillouin gain from (a1) 5.05 km to 5.25 km and (a2) 19.9 km to 20.1 km.
Fig. 4.
Fig. 4. (a) Measured BGS distribution and (b) estimated peak Brillouin gain distribution along the fiber.
Fig. 5.
Fig. 5. (a) The BFS distribution and (b) measurement certainty along the whole sensing range when the HPPP method is employed.
Fig. 6.
Fig. 6. Detection of a 12 m hotspot at the end of the fiber when the HPPP method is used. The BFS difference induced by 25°C temperature variation and the spatial resolution are ∼27.5 MHz and 2 m, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d d z S ^ s S ( z ) = β ( z ) × S ^ s S ( z ) + γ 0 P p ( z ) 2 [ S ^ p X ( z ) ( S ^ p X ( z ) S ^ s S ( z ) ) S ^ s S ( z ) ]
d d z S ^ s S ( z ) = β ( z ) × S ^ s S ( z ) γ 0 P p ( z ) 2 [ S ^ p X ( z ) ( S ^ p X ( z ) S ^ s S ( z ) ) S ^ s S ( z ) ]
d d z S ^ s A n S ( z ) = β ( z ) × S ^ s A n S ( z ) γ 0 P p ( z ) 2 [ S ^ p X ( z ) ( S ^ p X ( z ) S ^ s A n S ( z ) ) S ^ s A n S ( z ) ]
d d z S ^ s A n S ( z ) = β ( z ) × S ^ s A n S ( z ) + γ 0 P p ( z ) 2 [ S ^ p X ( z ) ( S ^ p X ( z ) S ^ s A n S ( z ) ) S ^ s A n S ( z ) ]

Metrics