Abstract

We experimentally demonstrated a corrugated metallic metasurface based tunable perfect absorber for terahertz (THz) frequencies in a total internal reflection geometry. The absorbance is strongly depend on the central layer of this three-layer absorber, which provides a feasible approach to tune the absorption. In particular, there exist an optimal gap that enables a perfect absorption at specific frequency. Due to the simple 1D geometric structure of metasurface, its absorption frequency can be easily tailored over a wide frequency range (0.625–1.499 THz). More importantly, the modulation of the effective refractive index and loss of medium environment can be accepted as an alternative approach for the absorption properties modulation. This prism coupling absorber provides a new route for modulation of the absorption characteristics with potential applications in biological sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
HR-Si prism coupled tightly confined spoof surface plasmon polaritons mode for terahertz sensing

Yi Huang, Shuncong Zhong, Tingting Shi, Yao-Chun Shen, and Daxiang Cui
Opt. Express 27(23) 34067-34078 (2019)

Multi-resonance and ultra-wideband terahertz metasurface absorber based on micro-template-assisted self-assembly method

Daquan Yang, Chao Zhang, Xiacao Ju, Yuefeng Ji, and Chuwen Lan
Opt. Express 28(2) 2547-2556 (2020)

References

  • View by:
  • |
  • |
  • |

  1. H. Inoue, K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref]
  2. J. M. Jornet and I. F. Akyildiz, “Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks,” IEEE Trans. Commun. 62(5), 1742–1754 (2014).
    [Crossref]
  3. J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
    [Crossref]
  4. S. Zhong, “Progress in terahertz nondestructive testing: A review,” Front. Mech. Eng. 14(3), 273–281 (2019).
    [Crossref]
  5. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
    [Crossref]
  6. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
    [Crossref]
  7. P. K. Sahoo, K. Vogelsang, H. Schift, and H. H. Solak, “Surface plasmon resonance in near-field coupled gold cylinder arrays fabricated by euv-interference lithography and hot embossing,” Appl. Surf. Sci. 256(2), 431–434 (2009).
    [Crossref]
  8. A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
    [Crossref]
  9. M. Qiu, M. Jia, S. Ma, S. Sun, Q. He, and L. Zhou, “Angular Dispersions in Terahertz Metasurfaces: Physics and Applications,” Phys. Rev. Appl. 9(5), 054050 (2018).
    [Crossref]
  10. R. Singh, W. Cao, I. Al-Naib, and L. Cong, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  11. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]
  12. A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
    [Crossref]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  14. A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
    [Crossref]
  15. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  16. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
    [Crossref]
  17. D. Lim, D. Lee, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
    [Crossref]
  18. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref]
  19. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref]
  20. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
    [Crossref]
  21. S. Jacob, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
    [Crossref]
  22. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A: Hadrons Nucl. 216(4), 398–410 (1968).
    [Crossref]
  23. H. Hirori, M. Nagai, and K. Tanaka, “Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection,” Opt. Express 13(26), 10801–10814 (2005).
    [Crossref]
  24. H. Yao and S. Zhong, “High-mode spoof spp of periodic metal grooves for ultra-sensitive terahertz sensing,” Opt. Express 22(21), 25149–25160 (2014).
    [Crossref]
  25. H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43(10A), L1287–L1289 (2004).
    [Crossref]
  26. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A: Mater. Sci. Process. 100(2), 375–378 (2010).
    [Crossref]
  27. C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
    [Crossref]
  28. Y. Huang, S. Zhong, H. Yao, and D. Cui, “Tunable Terahertz Plasmonic Sensor Based on Graphene/Insulator Stacks,” IEEE Photonics J. 9(1), 1–10 (2017).
    [Crossref]
  29. Y. Huang, S. Zhong, Y. Shen, Y. Yu, and D. Cui, “Terahertz phase jumps for ultra-sensitive graphene plasmon sensing,” Nanoscale 10(47), 22466–22473 (2018).
    [Crossref]
  30. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref]
  31. Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7(1), 80–88 (2019).
    [Crossref]
  32. M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
    [Crossref]
  33. Y. Zou, Q. Liu, X. Yang, H. Huang, J. Li, L. Du, Z. Li, J. Zhao, and L. Zhu, “Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy,” Biomed. Opt. Express 9(1), 14–24 (2018).
    [Crossref]
  34. X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
    [Crossref]
  35. D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
    [Crossref]

2019 (2)

S. Zhong, “Progress in terahertz nondestructive testing: A review,” Front. Mech. Eng. 14(3), 273–281 (2019).
[Crossref]

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7(1), 80–88 (2019).
[Crossref]

2018 (6)

2017 (3)

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
[Crossref]

Y. Huang, S. Zhong, H. Yao, and D. Cui, “Tunable Terahertz Plasmonic Sensor Based on Graphene/Insulator Stacks,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

2016 (3)

2014 (5)

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, and L. Cong, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

J. M. Jornet and I. F. Akyildiz, “Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks,” IEEE Trans. Commun. 62(5), 1742–1754 (2014).
[Crossref]

H. Yao and S. Zhong, “High-mode spoof spp of periodic metal grooves for ultra-sensitive terahertz sensing,” Opt. Express 22(21), 25149–25160 (2014).
[Crossref]

2013 (1)

X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[Crossref]

2012 (2)

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
[Crossref]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref]

2011 (1)

2010 (3)

J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[Crossref]

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A: Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
[Crossref]

2009 (1)

P. K. Sahoo, K. Vogelsang, H. Schift, and H. H. Solak, “Surface plasmon resonance in near-field coupled gold cylinder arrays fabricated by euv-interference lithography and hot embossing,” Appl. Surf. Sci. 256(2), 431–434 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

2007 (1)

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

2005 (1)

2004 (1)

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43(10A), L1287–L1289 (2004).
[Crossref]

2003 (1)

2000 (1)

G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

1983 (1)

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A: Hadrons Nucl. 216(4), 398–410 (1968).
[Crossref]

Abbott, D.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Ahmadivand, A.

Akyildiz, I. F.

J. M. Jornet and I. F. Akyildiz, “Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks,” IEEE Trans. Commun. 62(5), 1742–1754 (2014).
[Crossref]

Alexander, R. W.

Al-Naib, I.

R. Singh, W. Cao, I. Al-Naib, and L. Cong, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Atakaramians, S.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Averitt, R. D.

S. Jacob, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

Balakrishnan, J.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Basharin, A. A.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bhansali, S.

Burokur, S. N.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7(1), 80–88 (2019).
[Crossref]

Cao, W.

R. Singh, W. Cao, I. Al-Naib, and L. Cong, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Chen, Q.

Chin, S. L.

J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[Crossref]

Chuguevsky, V.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
[Crossref]

Cong, L.

R. Singh, W. Cao, I. Al-Naib, and L. Cong, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cui, D.

Y. Huang, S. Zhong, Y. Shen, Y. Yu, and D. Cui, “Terahertz phase jumps for ultra-sensitive graphene plasmon sensing,” Nanoscale 10(47), 22466–22473 (2018).
[Crossref]

Y. Huang, S. Zhong, H. Yao, and D. Cui, “Tunable Terahertz Plasmonic Sensor Based on Graphene/Insulator Stacks,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Cumming, D. R.

Dai, J.

J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[Crossref]

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ding, X.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7(1), 80–88 (2019).
[Crossref]

Du, L.

Duan, G.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

S. Jacob, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Durach, M.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A: Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Economou, E. N.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
[Crossref]

Ferguson, B.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Fischer, B. M.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Gan, C. H.

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
[Crossref]

Gerislioglu, B.

Grant, J.

Gu, C.

X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[Crossref]

Havenith, M.

M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
[Crossref]

He, Q.

M. Qiu, M. Jia, S. Ma, S. Sun, Q. He, and L. Zhou, “Angular Dispersions in Terahertz Metasurfaces: Physics and Applications,” Phys. Rev. Appl. 9(5), 054050 (2018).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Heilweil, E. J.

G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

Heyden, M.

M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
[Crossref]

Hirori, H.

H. Hirori, M. Nagai, and K. Tanaka, “Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection,” Opt. Express 13(26), 10801–10814 (2005).
[Crossref]

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43(10A), L1287–L1289 (2004).
[Crossref]

Huang, H.

Huang, Y.

Y. Huang, S. Zhong, Y. Shen, Y. Yu, and D. Cui, “Terahertz phase jumps for ultra-sensitive graphene plasmon sensing,” Nanoscale 10(47), 22466–22473 (2018).
[Crossref]

Y. Huang, S. Zhong, H. Yao, and D. Cui, “Tunable Terahertz Plasmonic Sensor Based on Graphene/Insulator Stacks,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Inoue, H.

Jacob, S.

S. Jacob, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Ji, J.

Jia, M.

M. Qiu, M. Jia, S. Ma, S. Sun, Q. He, and L. Zhou, “Angular Dispersions in Terahertz Metasurfaces: Physics and Applications,” Phys. Rev. Appl. 9(5), 054050 (2018).
[Crossref]

Jones, I.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Jornet, J. M.

J. M. Jornet and I. F. Akyildiz, “Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks,” IEEE Trans. Commun. 62(5), 1742–1754 (2014).
[Crossref]

Kafesaki, M.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
[Crossref]

Kang, J.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Karabiyik, M.

Kaushik, A.

Kawase, K.

Khalid, A.

Kim, J. H.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Kwon, J.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Lai, S.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lee, D.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

D. Lim, D. Lee, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
[Crossref]

Lee, J.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Lee, S.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Li, J.

Li, Z.

Lim, D.

D. Lim, D. Lee, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
[Crossref]

Lim, S.

D. Lim, D. Lee, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
[Crossref]

Lin, H.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Ling, F.

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, J.

J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[Crossref]

Liu, Q.

Long, L. L.

Lu, X.

X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[Crossref]

Luo, C.

Ma, S.

M. Qiu, M. Jia, S. Ma, S. Sun, Q. He, and L. Zhou, “Angular Dispersions in Terahertz Metasurfaces: Physics and Applications,” Phys. Rev. Appl. 9(5), 054050 (2018).
[Crossref]

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Manickam, P.

Markelz, G.

G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

Mickan, S. P.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Nagai, M.

H. Hirori, M. Nagai, and K. Tanaka, “Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection,” Opt. Express 13(26), 10801–10814 (2005).
[Crossref]

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43(10A), L1287–L1289 (2004).
[Crossref]

Nair, M.

Ng, B. W.-H.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Ogawa, Y.

Ordal, M. A.

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A: Hadrons Nucl. 216(4), 398–410 (1968).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Pala, N.

Pan, X.

X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[Crossref]

Park, Q.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Peng, X. Y.

Png, G. M.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Qiu, M.

M. Qiu, M. Jia, S. Ma, S. Sun, Q. He, and L. Zhou, “Angular Dispersions in Terahertz Metasurfaces: Physics and Applications,” Phys. Rev. Appl. 9(5), 054050 (2018).
[Crossref]

Quan, B.

X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[Crossref]

Ratni, B.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7(1), 80–88 (2019).
[Crossref]

Roitberg, A.

G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

Rusina, A.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A: Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Saha, S. C.

Sahoo, P. K.

P. K. Sahoo, K. Vogelsang, H. Schift, and H. H. Solak, “Surface plasmon resonance in near-field coupled gold cylinder arrays fabricated by euv-interference lithography and hot embossing,” Appl. Surf. Sci. 256(2), 431–434 (2009).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Schalch, J.

Schift, H.

P. K. Sahoo, K. Vogelsang, H. Schift, and H. H. Solak, “Surface plasmon resonance in near-field coupled gold cylinder arrays fabricated by euv-interference lithography and hot embossing,” Appl. Surf. Sci. 256(2), 431–434 (2009).
[Crossref]

Seo, M.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Shen, Y.

Y. Huang, S. Zhong, Y. Shen, Y. Yu, and D. Cui, “Terahertz phase jumps for ultra-sensitive graphene plasmon sensing,” Nanoscale 10(47), 22466–22473 (2018).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Shur, M.

Singh, R.

R. Singh, W. Cao, I. Al-Naib, and L. Cong, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Sinha, R.

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Solak, H. H.

P. K. Sahoo, K. Vogelsang, H. Schift, and H. H. Solak, “Surface plasmon resonance in near-field coupled gold cylinder arrays fabricated by euv-interference lithography and hot embossing,” Appl. Surf. Sci. 256(2), 431–434 (2009).
[Crossref]

Song, C.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Stockman, M. I.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A: Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Sun, S.

M. Qiu, M. Jia, S. Ma, S. Sun, Q. He, and L. Zhou, “Angular Dispersions in Terahertz Metasurfaces: Physics and Applications,” Phys. Rev. Appl. 9(5), 054050 (2018).
[Crossref]

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Tanaka, K.

H. Hirori, M. Nagai, and K. Tanaka, “Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection,” Opt. Express 13(26), 10801–10814 (2005).
[Crossref]

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43(10A), L1287–L1289 (2004).
[Crossref]

Teng, J. H.

Tomitaka, A.

Ung, B. S. Y.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Vogelsang, K.

P. K. Sahoo, K. Vogelsang, H. Schift, and H. H. Solak, “Surface plasmon resonance in near-field coupled gold cylinder arrays fabricated by euv-interference lithography and hot embossing,” Appl. Surf. Sci. 256(2), 431–434 (2009).
[Crossref]

Volsky, N.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
[Crossref]

Wang, B.

Wang, L.

X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[Crossref]

Ward, C. A.

Watanabe, Y.

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Withayachumnankul, W.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Woo, D. H.

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Wu, Q.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7(1), 80–88 (2019).
[Crossref]

Wu, X.

X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[Crossref]

Xu, X.

X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[Crossref]

Yamashita, K.

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43(10A), L1287–L1289 (2004).
[Crossref]

Yang, X.

Yao, G.

Yao, H.

Y. Huang, S. Zhong, H. Yao, and D. Cui, “Tunable Terahertz Plasmonic Sensor Based on Graphene/Insulator Stacks,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

H. Yao and S. Zhong, “High-mode spoof spp of periodic metal grooves for ultra-sensitive terahertz sensing,” Opt. Express 22(21), 25149–25160 (2014).
[Crossref]

Yao, J.

Yin, X.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Yu, Y.

Y. Huang, S. Zhong, Y. Shen, Y. Yu, and D. Cui, “Terahertz phase jumps for ultra-sensitive graphene plasmon sensing,” Nanoscale 10(47), 22466–22473 (2018).
[Crossref]

Yuan, Y.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7(1), 80–88 (2019).
[Crossref]

Yue, J.

Zhang, D. H.

Zhang, J.

Zhang, K.

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7(1), 80–88 (2019).
[Crossref]

Zhang, X.

S. Jacob, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

Zhang, X. C.

J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[Crossref]

Zhao, J.

Zhao, X.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

S. Jacob, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Zhong, S.

S. Zhong, “Progress in terahertz nondestructive testing: A review,” Front. Mech. Eng. 14(3), 273–281 (2019).
[Crossref]

Y. Huang, S. Zhong, Y. Shen, Y. Yu, and D. Cui, “Terahertz phase jumps for ultra-sensitive graphene plasmon sensing,” Nanoscale 10(47), 22466–22473 (2018).
[Crossref]

Y. Huang, S. Zhong, H. Yao, and D. Cui, “Tunable Terahertz Plasmonic Sensor Based on Graphene/Insulator Stacks,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

H. Yao and S. Zhong, “High-mode spoof spp of periodic metal grooves for ultra-sensitive terahertz sensing,” Opt. Express 22(21), 25149–25160 (2014).
[Crossref]

Zhou, L.

M. Qiu, M. Jia, S. Ma, S. Sun, Q. He, and L. Zhou, “Angular Dispersions in Terahertz Metasurfaces: Physics and Applications,” Phys. Rev. Appl. 9(5), 054050 (2018).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, J.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, L.

Zou, Y.

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A: Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Appl. Phys. Lett. (4)

C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012).
[Crossref]

S. Jacob, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, and L. Cong, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Appl. Surf. Sci. (1)

P. K. Sahoo, K. Vogelsang, H. Schift, and H. H. Solak, “Surface plasmon resonance in near-field coupled gold cylinder arrays fabricated by euv-interference lithography and hot embossing,” Appl. Surf. Sci. 256(2), 431–434 (2009).
[Crossref]

Biomed. Opt. Express (2)

Biosens. Bioelectron. (1)

X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[Crossref]

Chem. Phys. Lett. (1)

G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1–2), 42–48 (2000).
[Crossref]

Front. Mech. Eng. (1)

S. Zhong, “Progress in terahertz nondestructive testing: A review,” Front. Mech. Eng. 14(3), 273–281 (2019).
[Crossref]

IEEE Photonics J. (1)

Y. Huang, S. Zhong, H. Yao, and D. Cui, “Tunable Terahertz Plasmonic Sensor Based on Graphene/Insulator Stacks,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

IEEE Trans. Commun. (1)

J. M. Jornet and I. F. Akyildiz, “Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks,” IEEE Trans. Commun. 62(5), 1742–1754 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43(10A), L1287–L1289 (2004).
[Crossref]

Methods (1)

M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods 52(1), 74–83 (2010).
[Crossref]

Nanoscale (1)

Y. Huang, S. Zhong, Y. Shen, Y. Yu, and D. Cui, “Terahertz phase jumps for ultra-sensitive graphene plasmon sensing,” Nanoscale 10(47), 22466–22473 (2018).
[Crossref]

Nat. Photonics (2)

J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Photonics Res. (1)

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photonics Res. 7(1), 80–88 (2019).
[Crossref]

Phys. Rev. Appl. (1)

M. Qiu, M. Jia, S. Ma, S. Sun, Q. He, and L. Zhou, “Angular Dispersions in Terahertz Metasurfaces: Physics and Applications,” Phys. Rev. Appl. 9(5), 054050 (2018).
[Crossref]

Phys. Rev. B (1)

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Proc. IEEE (1)

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. M. Fischer, D. Abbott, B. Ferguson, and S. P. Mickan, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Sci. Rep. (2)

D. Lim, D. Lee, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber using via array,” Sci. Rep. 6(1), 39686 (2016).
[Crossref]

D. Lee, J. Kang, J. Kwon, J. Lee, S. Lee, D. H. Woo, J. H. Kim, C. Song, Q. Park, and M. Seo, “Nano metamaterials for ultrasensitive Terahertz biosensing,” Sci. Rep. 7(1), 8146 (2017).
[Crossref]

Z. Phys. A: Hadrons Nucl. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A: Hadrons Nucl. 216(4), 398–410 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of THz-MPA with Otto geometry. Through ATR at the base of PE prism, part of the THz wave will couple into SSPPs wave traveling along the SPS, thus forming an absorbing dip in the reflected THz spectrum.
Fig. 2.
Fig. 2. (a) Optical microscopy images of four corrugated SPS samples with different sizes of trapezoidal groove unit. (b) SSPPs dispersion relation (diamond, roundness, rectangle, and triangle) for sample I, II, III, and IV by FEM calculation with COMSOL software in the Brillioun zone. The curves are the calculation results of SPSs decorated with square grooves using an effective medium approximation model. The pink and black double dots curves indicate the light line and the parallel wavevector k, respectively. The insets show the electric field distributions for the unit cell of the four SPS samples near the Brillioun zone.
Fig. 3.
Fig. 3. Experimental time-domain signals (a), absorption spectra (b), and phase change spectra (c) of the MPA with sample III at varying free-space coupling gaps g. The measured time-domain signals are shifted for visual clarity.
Fig. 4.
Fig. 4. Experimental absorption spectra (a), and phase change spectra (b) of the MPA with SPS samples of different depths and widths (I, II, III, and IV) at their respective relatively optimal coupling gaps g. The corresponding simulated absorption spectra (c), and phase change spectra (d). The inset shows the unit cell of the 2D simulation model.
Fig. 5.
Fig. 5. Experimental absorption spectra (a), and phase change spectra (b) of the MPAs with sample I in which its grooves filled with water and air.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k SSPPs = k = k 0 n p sin θ i n ,
k SSPPs = ( ε d k 0 2 + ( ( w eff ε d ) / ( w eff ε d ) ( p ε g ) ( p ε g ) ) 2 k g 2 tan 2 ( k g h ) ) 1 / 1 2 2 ,
A ( ω ) = 1 R ( ω ) ,
Δ ϕ = ϕ s a m ϕ ref .

Metrics