Abstract

A tunable metamaterial absorber is proposed in the terahertz regime. The amplitude and center frequency of the absorber can be tuned independently. Owing to the effective combination of graphene and strontium titanate (STO) in one metamaterial structure, the tunable properties of the amplitude and center frequency are implemented. The amplitude can be tuned by adjusting the chemical potential of graphene sheet, and center frequency can get a shift through temperature changes in the STO material. In a full-wave numerical simulation, the amplitude of the absorber can be tuned from approximately 100% to 35% with a fixed center frequency when chemical potential varies from 0.7 eV to 0.0 eV. The center frequency of the absorber can shift from 0.43 THz to 0.3 THz when temperature changes from 400 K to 200 K. The complex surface impedance of the graphene and permittivity of STO material in this research range are thoroughly examined, and the independently tunable mechanism of the absorber is explored by elucidating the electric field distribution. The influence of the oblique incidence of electromagnetic wave to the absorber is studied. The absorber can be scalable to the infrared and visible frequencies and demonstrates promising application on tunable sensors, filters, and photovoltaic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime

Xin Huang, Wei He, Fan Yang, Jia Ran, Qi Yang, and Shengyi Xie
Opt. Mater. Express 9(3) 1377-1385 (2019)

Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime

Xin Huang, Wei He, Fan Yang, Jia Ran, Bing Gao, and Wei-Li Zhang
Opt. Express 26(20) 25558-25566 (2018)

Frequency tunable metamaterial absorber at deep-subwavelength scale

Ben-Xin Wang, Xiang Zhai, Gui-Zhen Wang, Wei-Qing Huang, and Ling-Ling Wang
Opt. Mater. Express 5(2) 227-235 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Q. Liang, W. Yu, W. Zhao, T. Wang, J. Zhao, H. Zhang, and S. Tao, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3(8), 1187–1196 (2013).
    [Crossref]
  2. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  3. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  4. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  5. J. Y. Suen, K. Fan, W. J. Padilla, and X. Liu, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
    [Crossref]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  7. H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
    [Crossref]
  8. W. Chen, R. Chen, Y. Zhou, and Y. Ma, “Broadband metamaterial absorber with an in-band metasurface function,” Opt. Lett. 44(5), 1076–1079 (2019).
    [Crossref] [PubMed]
  9. A. Li, X. Zhao, G. Duan, S. Anderson, and X. Zhang, “Diatom Frustule‐Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays,” Adv. Funct. Mater. 29(22), 1970151 (2019).
    [Crossref]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  11. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  12. X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
    [Crossref]
  13. J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
    [Crossref]
  14. H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
    [Crossref]
  15. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref] [PubMed]
  16. C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
    [Crossref] [PubMed]
  17. X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W. L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
    [Crossref] [PubMed]
  18. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  19. J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
    [Crossref]
  20. Y. Zhao, B. Li, C. Lan, K. Bi, and Z. Qu, “Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range,” Opt. Express 25(18), 22158–22163 (2017).
    [Crossref] [PubMed]
  21. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
    [Crossref] [PubMed]
  22. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  23. P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
    [Crossref]
  24. H. Nĕmec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30(5), 549–551 (2005).
    [Crossref] [PubMed]
  25. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
    [Crossref]
  26. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
    [Crossref]
  27. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  28. T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
    [Crossref]

2019 (4)

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

W. Chen, R. Chen, Y. Zhou, and Y. Ma, “Broadband metamaterial absorber with an in-band metasurface function,” Opt. Lett. 44(5), 1076–1079 (2019).
[Crossref] [PubMed]

A. Li, X. Zhao, G. Duan, S. Anderson, and X. Zhang, “Diatom Frustule‐Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays,” Adv. Funct. Mater. 29(22), 1970151 (2019).
[Crossref]

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

2018 (3)

2017 (3)

2015 (2)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
[Crossref]

2013 (2)

Q. Liang, W. Yu, W. Zhao, T. Wang, J. Zhao, H. Zhang, and S. Tao, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3(8), 1187–1196 (2013).
[Crossref]

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

2012 (1)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

2011 (7)

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

2005 (1)

2002 (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

An, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Anderson, S.

A. Li, X. Zhao, G. Duan, S. Anderson, and X. Zhang, “Diatom Frustule‐Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays,” Adv. Funct. Mater. 29(22), 1970151 (2019).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Averitt, R. D.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

Aydin, K.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Azad, A. K.

Banar, B.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Bi, K.

Boudouris, B. W.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Butun, S.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
[Crossref]

Cai, G.

Chen, C.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Chen, C. F.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Chen, H. T.

Chen, R.

Chen, W.

W. Chen, R. Chen, Y. Zhou, and Y. Ma, “Broadband metamaterial absorber with an in-band metasurface function,” Opt. Lett. 44(5), 1076–1079 (2019).
[Crossref] [PubMed]

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Chen, Y.

Chen, Z.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Cremin, K.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Crommie, M. F.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Ding, K.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Dressel, M.

Duan, G.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

A. Li, X. Zhao, G. Duan, S. Anderson, and X. Zhang, “Diatom Frustule‐Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays,” Adv. Funct. Mater. 29(22), 1970151 (2019).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

Duvillaret, L.

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, K.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Gao, B.

Geng, B.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Girit, C.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gu, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Han, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

He, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

He, W.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Horng, J.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hu, J.

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

Huang, X.

Huang, Y.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Ji, C.

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

Jia, Q. X.

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kadlec, F.

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kocer, H.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
[Crossref]

Kuzel, P.

Kužel, P.

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

Lan, C.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Li, A.

A. Li, X. Zhao, G. Duan, S. Anderson, and X. Zhang, “Diatom Frustule‐Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays,” Adv. Funct. Mater. 29(22), 1970151 (2019).
[Crossref]

Li, B.

Li, H.

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

Li, J.

Li, X.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Liang, Q.

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Liu, N.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Q. H.

Liu, X.

J. Y. Suen, K. Fan, W. J. Padilla, and X. Liu, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Louie, S. G.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Ma, Y.

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Miao, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Min, B.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nemec, H.

Padilla, W. J.

J. Y. Suen, K. Fan, W. J. Padilla, and X. Liu, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, C. H.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Pashkin, A.

Qin, M.

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

Qu, Z.

Ran, J.

Ren, Y.

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schalch, J.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Sebastian, M. T.

Segalman, R. A.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Singh, R.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Song, Z.

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Suen, J. Y.

Tao, S.

Taylor, A. J.

Tian, Z.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Tongay, S.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Wang, K.

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
[Crossref]

Wang, L.

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

Wang, T.

Wang, Y.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Wanghuang, T.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, G.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Wu, J.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
[Crossref]

Wu, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Yang, F.

Ye, L.

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Yu, W.

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Zhang, H.

Zhang, J.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Zhang, W.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Zhang, W. L.

Zhang, X.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

A. Li, X. Zhao, G. Duan, S. Anderson, and X. Zhang, “Diatom Frustule‐Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays,” Adv. Funct. Mater. 29(22), 1970151 (2019).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Zhang, Y.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Zhao, J.

Zhao, W.

Zhao, X.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

A. Li, X. Zhao, G. Duan, S. Anderson, and X. Zhang, “Diatom Frustule‐Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays,” Adv. Funct. Mater. 29(22), 1970151 (2019).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

Zhao, Y.

Zhou, L.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Zhou, Y.

Zhu, J.

ACS Photonics (1)

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Adv. Funct. Mater. (1)

A. Li, X. Zhao, G. Duan, S. Anderson, and X. Zhang, “Diatom Frustule‐Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays,” Adv. Funct. Mater. 29(22), 1970151 (2019).
[Crossref]

AIP Adv. (1)

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Appl. Phys. Lett. (2)

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106(16), 161104 (2015).
[Crossref]

C. R. Phys. (1)

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

Carbon (1)

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).
[Crossref]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene Plasmonics for Tunable Terahertz Metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nature (1)

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Independently tunable metamaterials absorber for amplitude and frequency with graphene and STO layer. (a) Top view of the unit cell. (b) Schematic representation and geometrical characters of the unit cell. (c) Schematic representation of the proposed absorber, which consist of a graphene sheet, two dielectric layers and one metallic background layer, with the terahertz wave along the z-axis. The geometrical parameters are given.
Fig. 2
Fig. 2 Reflection and absorption spectra of the absorber under initial conditions.
Fig. 3
Fig. 3 Permittivity of STO material as a function of temperature and frequency. (a) Real part of permittivity. (b) Losses tanδ.
Fig. 4
Fig. 4 Center frequency tunable spectra by changing the temperature from 400 K to 200 K.
Fig. 5
Fig. 5 Phase of the reflected wave as a function of temperature from 200 K to 400K.
Fig. 6
Fig. 6 Complex impedance of graphene as a function of frequency under different chemical potentials and temperatures. (a) Real part with different chemical potential. (b) Imaginary part with different chemical potential, (c) Real part with different temperatures. (d) Imaginary part with different temperatures.
Fig. 7
Fig. 7 Amplitude tunable spectra under different chemical potentials.
Fig. 8
Fig. 8 Electric distribution of the peak frequency under different temperatures.
Fig. 9
Fig. 9 Electric distribution under different chemical potentials of graphene sheet, with the absolute temperature of 400 K at resonant frequency of 0.43 THz.
Fig. 10
Fig. 10 Absorption contour map of the absorber as a function of frequency and incident angles from 0° to 80°with a step-width of 10°. (a) For TE mode. (b) For TM mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ gra σ intra (ω, μ c ,Γ,T)= j e 2 π 2 (ωj2Γ) 0 ( f d (E, μ c ,T) E f d (E, μ c ,T) E ) EdE,
ε w = ε + f ω 0 2 ω 2 iωγ ,
ω 0 (T)[ cm -1 ]= 31.2(T42.5) γ(T)[ cm -1 ]=3.3+0.094T,
A(ω)=1R(ω)T(ω)=1 | S 11 | 2 | S 21 | 2 ,

Metrics