Abstract

A model based on rate-equation analysis has been developed for simulation of two-photon-excited laser-induced fluorescence of carbon monoxide (CO) in the Hopfield-Birge band at 230 nm. The model has been compared with experimental fluorescence profiles measured along focused beams provided by lasers emitting nano-, pico-, and femtosecond pulses. Good quantitative agreement was obtained between simulations and experimental data obtained in premixed CH4/C2H4-air flames. For excitation with femtosecond pulses, experimental and simulated fluorescence signals showed quadratic dependence on laser power under conditions of low laser irradiance, whereas different sublinear dependencies were obtained at higher irradiances due to photoionization. Simulations of CO signal versus femtosecond laser linewidth suggest the strongest signal for a transform-limited pulse, which is sufficiently broad spectrally to cover the CO Q-branch absorption spectrum. Altogether, the developed rate-equation model allows for analysis of two-photon excitation fluorescence to arrange suitable diagnostic configurations and retrieve quantitative data for CO as well as other species in combustion, such as atomic oxygen and hydrogen.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond, two-photon, laser-induced fluorescence (TP-LIF) measurement of CO in high-pressure flames

K. Arafat Rahman, Karna S. Patel, Mikhail N. Slipchenko, Terrence R. Meyer, Zhili Zhang, Yue Wu, James R. Gord, and Sukesh Roy
Appl. Opt. 57(20) 5666-5671 (2018)

Pressure-scaling characteristics of femtosecond two-photon laser-induced fluorescence of carbon monoxide

K. Arafat Rahman, Venkat Athmanathan, Mikhail N. Slipchenko, Terrence R. Meyer, and Sukesh Roy
Appl. Opt. 58(27) 7458-7465 (2019)

Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames

Jonathan H. Frank, Xiangling Chen, Brian D. Patterson, and Thomas B. Settersten
Appl. Opt. 43(12) 2588-2597 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Woolcock and R. C. Brown, “A review of cleaning technologies for biomass-derived syngas,” Biomass Bioenergy 52, 54–84 (2013).
    [Crossref]
  2. H. S. Guo, K. A. Thomson, and G. J. Smallwood, “On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame,” Combust. Flame 156(6), 1135–1142 (2009).
    [Crossref]
  3. J. Warnatz, U. Maas, and W.R. Dibble, Combustion : physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation (Springer, 2006).
  4. S. M. Sarathy, P. Osswald, N. Hansen, and K. Kohse-Hoinghaus, “Alcohol combustion chemistry,” Prog. Energy Combust. Sci. 44, 40–102 (2014).
    [Crossref]
  5. X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers,” Meas. Sci. Technol. 20(11), 115201 (2009).
    [Crossref]
  6. R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
    [Crossref]
  7. K. C. Utsav, J. A. Silver, D. C. Hovde, and P. L. Varghese, “Improved multiple-pass Raman spectrometer,” Appl. Opt. 50(24), 4805–4816 (2011).
    [Crossref]
  8. M. Aldén, S. Wallin, and W. Wendt, “Applications of 2-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B: Photophys. Laser Chem. 33(4), 205–208 (1984).
    [Crossref]
  9. B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
    [Crossref]
  10. C. Brackmann, O. Hole, B. Zhou, Z. Li, and M. Aldén, “Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics,” Appl. Phys. B: Lasers Opt. 115(1), 25–33 (2014).
    [Crossref]
  11. W. D. Kulatilaka, J. R. Gord, V. R. Katta, and S. Roy, “Photolytic-interference-free, femtosecond two-photon fluorescence imaging of atomic hydrogen,” Opt. Lett. 37(15), 3051–3053 (2012).
    [Crossref]
  12. W. D. Kulatilaka, B. D. Patterson, J. H. Frank, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames,” Appl. Opt. 47(26), 4672–4683 (2008).
    [Crossref]
  13. U. Westblom, S. Agrup, M. Aldén, and P. Cederbalk, “Detection of Nitrogen-Atoms in Flames Using 2-Photon Laser-Induced Fluorescence and Investigations of Photochemical Effects,” Appl. Opt. 30(21), 2990–3002 (1991).
    [Crossref]
  14. J. H. Frank, X. L. Chen, B. D. Patterson, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames,” Appl. Opt. 43(12), 2588–2597 (2004).
    [Crossref]
  15. U. Westblom, P. E. Bengtsson, and M. Aldén, “Carbon-Atom Fluorescence and C2 Emission Detected in Fuel-Rich Flames Using a Uv Laser,” Appl. Phys. B: Photophys. Laser Chem. 52(6), 371–375 (1991).
    [Crossref]
  16. A. P. Nefedov, V. A. Sinel’shchikov, A. D. Usachev, and A. V. Zobnin, “Photochemical effect in two-photon laser-induced fluorescence detection of carbon monoxide in hydrocarbon flames,” Appl. Opt. 37(33), 7729–7736 (1998).
    [Crossref]
  17. J. E. M. Goldsmith and D. T. B. Kearsley, “C2 Creation, Emission, and Laser-Induced Fluorescence in Flames and Cold Gases,” Appl. Phys. B: Photophys. Laser Chem. 50(5), 371–379 (1990).
    [Crossref]
  18. C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Aldén, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34(2), 3541–3548 (2013).
    [Crossref]
  19. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of Ultrafast Lasers for Optical Measurements in Combusting Flows,” Annu. Rev. Anal. Chem. 1(1), 663–687 (2008).
    [Crossref]
  20. D. R. Richardson, S. Roy, and J. R. Gord, “Femtosecond, two-photon, planar laser-induced fluorescence of carbon monoxide in flames,” Opt. Lett. 42(4), 875–878 (2017).
    [Crossref]
  21. Y. J. Wang and W. D. Kulatilaka, “Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF),” Appl. Phys. B: Lasers Opt. 124(1), 8 (2018).
    [Crossref]
  22. O. Carrivain, M. Orain, N. Dorval, C. Morin, and G. Legros, “Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures,” Appl. Spectrosc. 71(10), 2353–2366 (2017).
    [Crossref]
  23. B. Li, X. F. Li, D. Y. Zhang, Q. Gao, M. F. Yao, and Z. S. Li, “Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence,” Opt. Express 25(21), 25809–25818 (2017).
    [Crossref]
  24. R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
    [Crossref]
  25. “CHEMKIN-PRO 15101,” (Reaction Design, 2010).
  26. Y. Li, C. W. Zhou, K. P. Somers, K. W. Zhang, and H. J. Curran, “The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene,” Proc. Combust. Inst. 36(1), 403–411 (2017).
    [Crossref]
  27. C. M. Western, “PGOPHER: A program for simulating rotational, vibrational and electronic spectra,” J. Quant. Spectrosc. Radiat. Transfer 186, 221–242 (2017).
    [Crossref]
  28. T. George, W. Urban, and A. Lefloch, “Improved Mass-Independent Dunham Parameters for the Ground-State of CO and Calibration Frequencies for the Fundamental-Band,” J. Mol. Spectrosc. 165(2), 500–505 (1994).
    [Crossref]
  29. M. Eidelsberg, J. Y. Roncin, A. Lefloch, F. Launay, C. Letzelter, and J. Rostas, “Reinvestigation of the Vacuum Ultraviolet-Spectrum of Co and Isotopic-Species - the B1Σ+ ↔X1Σ+ Transition,” J. Mol. Spectrosc. 121(2), 309–336 (1987).
    [Crossref]
  30. Z. Qin, J. M. Zhao, and L. H. Liu, “Radiative transition probabilities for the main diatomic electronic systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 produced in plasma of atmospheric entry,” J. Quant. Spectrosc. Radiat. Transfer 202, 286–301 (2017).
    [Crossref]
  31. U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of Laser-Induced Stimulated-Emission for Diagnostic Purposes,” Appl. Phys. B: Photophys. Laser Chem. 50(6), 487–497 (1990).
    [Crossref]
  32. G. J. Fiechtner and J. R. Gord, “Absorption and the dimensionless overlap integral for two-photon excitation,” J. Quant. Spectrosc. Radiat. Transfer 68(5), 543–557 (2001).
    [Crossref]
  33. M. D. Di Rosa and R. L. Farrow, “Two-photon excitation cross section of the B ← X(0,0) band of CO measured by direct absorption,” J. Opt. Soc. Am. B 16(11), 1988–1994 (1999).
    [Crossref]
  34. T. B. Settersten, A. Dreizler, and R. L. Farrow, “Temperature- and species-dependent quenching of CO B probed by two-photon laser-induced fluorescence using a picosecond laser,” J. Chem. Phys. 117(7), 3173–3179 (2002).
    [Crossref]
  35. M. D. Di Rosa and R. L. Farrow, “Cross sections of photoionization and ac Stark shift measured from Doppler-free B ← X(0,0) excitation spectra of CO,” J. Opt. Soc. Am. B 16(5), 861–870 (1999).
    [Crossref]
  36. F. Di Teodoro and R. L. Farrow, “CO+ B2Σ+ (ν=0) emission induced by laser excitation of neutral CO at 230 nm,” J. Chem. Phys. 114(8), 3421–3428 (2001).
    [Crossref]
  37. K. A. Rahman, K. S. Patel, M. N. Slipchenko, T. R. Meyer, Z. L. Zhang, Y. Wu, J. R. Gord, and S. Roy, “Femtosecond, two-photon, laser-induced fluorescence (TP-LIF) measurement of CO in high-pressure flames,” Appl. Opt. 57(20), 5666–5671 (2018).
    [Crossref]
  38. M. Aldén, U. Westblom, and J. E. M. Goldsmith, “2-Photon-Excited Stimulated-Emission from Atomic Oxygen in Flames and Cold Gases,” Opt. Lett. 14(6), 305–307 (1989).
    [Crossref]
  39. M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B: Lasers Opt. 115(1), 35–43 (2014).
    [Crossref]
  40. T. B. Settersten and M. A. Linne, “Modeling pulsed excitation for gas-phase laser diagnostics,” J. Opt. Soc. Am. B 19(5), 954–964 (2002).
    [Crossref]

2018 (2)

Y. J. Wang and W. D. Kulatilaka, “Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF),” Appl. Phys. B: Lasers Opt. 124(1), 8 (2018).
[Crossref]

K. A. Rahman, K. S. Patel, M. N. Slipchenko, T. R. Meyer, Z. L. Zhang, Y. Wu, J. R. Gord, and S. Roy, “Femtosecond, two-photon, laser-induced fluorescence (TP-LIF) measurement of CO in high-pressure flames,” Appl. Opt. 57(20), 5666–5671 (2018).
[Crossref]

2017 (6)

O. Carrivain, M. Orain, N. Dorval, C. Morin, and G. Legros, “Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures,” Appl. Spectrosc. 71(10), 2353–2366 (2017).
[Crossref]

B. Li, X. F. Li, D. Y. Zhang, Q. Gao, M. F. Yao, and Z. S. Li, “Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence,” Opt. Express 25(21), 25809–25818 (2017).
[Crossref]

Y. Li, C. W. Zhou, K. P. Somers, K. W. Zhang, and H. J. Curran, “The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene,” Proc. Combust. Inst. 36(1), 403–411 (2017).
[Crossref]

C. M. Western, “PGOPHER: A program for simulating rotational, vibrational and electronic spectra,” J. Quant. Spectrosc. Radiat. Transfer 186, 221–242 (2017).
[Crossref]

D. R. Richardson, S. Roy, and J. R. Gord, “Femtosecond, two-photon, planar laser-induced fluorescence of carbon monoxide in flames,” Opt. Lett. 42(4), 875–878 (2017).
[Crossref]

Z. Qin, J. M. Zhao, and L. H. Liu, “Radiative transition probabilities for the main diatomic electronic systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 produced in plasma of atmospheric entry,” J. Quant. Spectrosc. Radiat. Transfer 202, 286–301 (2017).
[Crossref]

2014 (4)

S. M. Sarathy, P. Osswald, N. Hansen, and K. Kohse-Hoinghaus, “Alcohol combustion chemistry,” Prog. Energy Combust. Sci. 44, 40–102 (2014).
[Crossref]

C. Brackmann, O. Hole, B. Zhou, Z. Li, and M. Aldén, “Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics,” Appl. Phys. B: Lasers Opt. 115(1), 25–33 (2014).
[Crossref]

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B: Lasers Opt. 115(1), 35–43 (2014).
[Crossref]

2013 (2)

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Aldén, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34(2), 3541–3548 (2013).
[Crossref]

P. J. Woolcock and R. C. Brown, “A review of cleaning technologies for biomass-derived syngas,” Biomass Bioenergy 52, 54–84 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (2)

H. S. Guo, K. A. Thomson, and G. J. Smallwood, “On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame,” Combust. Flame 156(6), 1135–1142 (2009).
[Crossref]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers,” Meas. Sci. Technol. 20(11), 115201 (2009).
[Crossref]

2008 (2)

2004 (1)

2002 (2)

T. B. Settersten, A. Dreizler, and R. L. Farrow, “Temperature- and species-dependent quenching of CO B probed by two-photon laser-induced fluorescence using a picosecond laser,” J. Chem. Phys. 117(7), 3173–3179 (2002).
[Crossref]

T. B. Settersten and M. A. Linne, “Modeling pulsed excitation for gas-phase laser diagnostics,” J. Opt. Soc. Am. B 19(5), 954–964 (2002).
[Crossref]

2001 (3)

F. Di Teodoro and R. L. Farrow, “CO+ B2Σ+ (ν=0) emission induced by laser excitation of neutral CO at 230 nm,” J. Chem. Phys. 114(8), 3421–3428 (2001).
[Crossref]

G. J. Fiechtner and J. R. Gord, “Absorption and the dimensionless overlap integral for two-photon excitation,” J. Quant. Spectrosc. Radiat. Transfer 68(5), 543–557 (2001).
[Crossref]

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[Crossref]

2000 (1)

B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
[Crossref]

1999 (2)

1998 (1)

1994 (1)

T. George, W. Urban, and A. Lefloch, “Improved Mass-Independent Dunham Parameters for the Ground-State of CO and Calibration Frequencies for the Fundamental-Band,” J. Mol. Spectrosc. 165(2), 500–505 (1994).
[Crossref]

1991 (2)

U. Westblom, P. E. Bengtsson, and M. Aldén, “Carbon-Atom Fluorescence and C2 Emission Detected in Fuel-Rich Flames Using a Uv Laser,” Appl. Phys. B: Photophys. Laser Chem. 52(6), 371–375 (1991).
[Crossref]

U. Westblom, S. Agrup, M. Aldén, and P. Cederbalk, “Detection of Nitrogen-Atoms in Flames Using 2-Photon Laser-Induced Fluorescence and Investigations of Photochemical Effects,” Appl. Opt. 30(21), 2990–3002 (1991).
[Crossref]

1990 (2)

J. E. M. Goldsmith and D. T. B. Kearsley, “C2 Creation, Emission, and Laser-Induced Fluorescence in Flames and Cold Gases,” Appl. Phys. B: Photophys. Laser Chem. 50(5), 371–379 (1990).
[Crossref]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of Laser-Induced Stimulated-Emission for Diagnostic Purposes,” Appl. Phys. B: Photophys. Laser Chem. 50(6), 487–497 (1990).
[Crossref]

1989 (1)

1987 (1)

M. Eidelsberg, J. Y. Roncin, A. Lefloch, F. Launay, C. Letzelter, and J. Rostas, “Reinvestigation of the Vacuum Ultraviolet-Spectrum of Co and Isotopic-Species - the B1Σ+ ↔X1Σ+ Transition,” J. Mol. Spectrosc. 121(2), 309–336 (1987).
[Crossref]

1984 (1)

M. Aldén, S. Wallin, and W. Wendt, “Applications of 2-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B: Photophys. Laser Chem. 33(4), 205–208 (1984).
[Crossref]

Agrup, S.

U. Westblom, S. Agrup, M. Aldén, and P. Cederbalk, “Detection of Nitrogen-Atoms in Flames Using 2-Photon Laser-Induced Fluorescence and Investigations of Photochemical Effects,” Appl. Opt. 30(21), 2990–3002 (1991).
[Crossref]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of Laser-Induced Stimulated-Emission for Diagnostic Purposes,” Appl. Phys. B: Photophys. Laser Chem. 50(6), 487–497 (1990).
[Crossref]

Aldén, M.

C. Brackmann, O. Hole, B. Zhou, Z. Li, and M. Aldén, “Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics,” Appl. Phys. B: Lasers Opt. 115(1), 25–33 (2014).
[Crossref]

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B: Lasers Opt. 115(1), 35–43 (2014).
[Crossref]

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Aldén, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34(2), 3541–3548 (2013).
[Crossref]

U. Westblom, P. E. Bengtsson, and M. Aldén, “Carbon-Atom Fluorescence and C2 Emission Detected in Fuel-Rich Flames Using a Uv Laser,” Appl. Phys. B: Photophys. Laser Chem. 52(6), 371–375 (1991).
[Crossref]

U. Westblom, S. Agrup, M. Aldén, and P. Cederbalk, “Detection of Nitrogen-Atoms in Flames Using 2-Photon Laser-Induced Fluorescence and Investigations of Photochemical Effects,” Appl. Opt. 30(21), 2990–3002 (1991).
[Crossref]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of Laser-Induced Stimulated-Emission for Diagnostic Purposes,” Appl. Phys. B: Photophys. Laser Chem. 50(6), 487–497 (1990).
[Crossref]

M. Aldén, U. Westblom, and J. E. M. Goldsmith, “2-Photon-Excited Stimulated-Emission from Atomic Oxygen in Flames and Cold Gases,” Opt. Lett. 14(6), 305–307 (1989).
[Crossref]

M. Aldén, S. Wallin, and W. Wendt, “Applications of 2-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B: Photophys. Laser Chem. 33(4), 205–208 (1984).
[Crossref]

Bengtsson, P. E.

U. Westblom, P. E. Bengtsson, and M. Aldén, “Carbon-Atom Fluorescence and C2 Emission Detected in Fuel-Rich Flames Using a Uv Laser,” Appl. Phys. B: Photophys. Laser Chem. 52(6), 371–375 (1991).
[Crossref]

Bood, J.

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B: Lasers Opt. 115(1), 35–43 (2014).
[Crossref]

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Aldén, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34(2), 3541–3548 (2013).
[Crossref]

Brackmann, C.

C. Brackmann, O. Hole, B. Zhou, Z. Li, and M. Aldén, “Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics,” Appl. Phys. B: Lasers Opt. 115(1), 25–33 (2014).
[Crossref]

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Aldén, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34(2), 3541–3548 (2013).
[Crossref]

Brown, R. C.

P. J. Woolcock and R. C. Brown, “A review of cleaning technologies for biomass-derived syngas,” Biomass Bioenergy 52, 54–84 (2013).
[Crossref]

Carrivain, O.

Cederbalk, P.

Chao, X.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers,” Meas. Sci. Technol. 20(11), 115201 (2009).
[Crossref]

Chen, X. L.

Christensen, M.

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B: Lasers Opt. 115(1), 35–43 (2014).
[Crossref]

Curran, H. J.

Y. Li, C. W. Zhou, K. P. Somers, K. W. Zhang, and H. J. Curran, “The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene,” Proc. Combust. Inst. 36(1), 403–411 (2017).
[Crossref]

Davidson, D. F.

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

Di Rosa, M. D.

Di Teodoro, F.

F. Di Teodoro and R. L. Farrow, “CO+ B2Σ+ (ν=0) emission induced by laser excitation of neutral CO at 230 nm,” J. Chem. Phys. 114(8), 3421–3428 (2001).
[Crossref]

Dibble, W.R.

J. Warnatz, U. Maas, and W.R. Dibble, Combustion : physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation (Springer, 2006).

Dorval, N.

Dreizler, A.

T. B. Settersten, A. Dreizler, and R. L. Farrow, “Temperature- and species-dependent quenching of CO B probed by two-photon laser-induced fluorescence using a picosecond laser,” J. Chem. Phys. 117(7), 3173–3179 (2002).
[Crossref]

Ehn, A.

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B: Lasers Opt. 115(1), 35–43 (2014).
[Crossref]

Eidelsberg, M.

M. Eidelsberg, J. Y. Roncin, A. Lefloch, F. Launay, C. Letzelter, and J. Rostas, “Reinvestigation of the Vacuum Ultraviolet-Spectrum of Co and Isotopic-Species - the B1Σ+ ↔X1Σ+ Transition,” J. Mol. Spectrosc. 121(2), 309–336 (1987).
[Crossref]

Farrow, R. L.

T. B. Settersten, A. Dreizler, and R. L. Farrow, “Temperature- and species-dependent quenching of CO B probed by two-photon laser-induced fluorescence using a picosecond laser,” J. Chem. Phys. 117(7), 3173–3179 (2002).
[Crossref]

F. Di Teodoro and R. L. Farrow, “CO+ B2Σ+ (ν=0) emission induced by laser excitation of neutral CO at 230 nm,” J. Chem. Phys. 114(8), 3421–3428 (2001).
[Crossref]

M. D. Di Rosa and R. L. Farrow, “Cross sections of photoionization and ac Stark shift measured from Doppler-free B ← X(0,0) excitation spectra of CO,” J. Opt. Soc. Am. B 16(5), 861–870 (1999).
[Crossref]

M. D. Di Rosa and R. L. Farrow, “Two-photon excitation cross section of the B ← X(0,0) band of CO measured by direct absorption,” J. Opt. Soc. Am. B 16(11), 1988–1994 (1999).
[Crossref]

Fiechtner, G. J.

G. J. Fiechtner and J. R. Gord, “Absorption and the dimensionless overlap integral for two-photon excitation,” J. Quant. Spectrosc. Radiat. Transfer 68(5), 543–557 (2001).
[Crossref]

Forkey, J. N.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[Crossref]

Frank, J. H.

Gao, Q.

George, T.

T. George, W. Urban, and A. Lefloch, “Improved Mass-Independent Dunham Parameters for the Ground-State of CO and Calibration Frequencies for the Fundamental-Band,” J. Mol. Spectrosc. 165(2), 500–505 (1994).
[Crossref]

Goldsmith, J. E. M.

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of Laser-Induced Stimulated-Emission for Diagnostic Purposes,” Appl. Phys. B: Photophys. Laser Chem. 50(6), 487–497 (1990).
[Crossref]

J. E. M. Goldsmith and D. T. B. Kearsley, “C2 Creation, Emission, and Laser-Induced Fluorescence in Flames and Cold Gases,” Appl. Phys. B: Photophys. Laser Chem. 50(5), 371–379 (1990).
[Crossref]

M. Aldén, U. Westblom, and J. E. M. Goldsmith, “2-Photon-Excited Stimulated-Emission from Atomic Oxygen in Flames and Cold Gases,” Opt. Lett. 14(6), 305–307 (1989).
[Crossref]

Gord, J. R.

Guo, H. S.

H. S. Guo, K. A. Thomson, and G. J. Smallwood, “On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame,” Combust. Flame 156(6), 1135–1142 (2009).
[Crossref]

Hansen, N.

S. M. Sarathy, P. Osswald, N. Hansen, and K. Kohse-Hoinghaus, “Alcohol combustion chemistry,” Prog. Energy Combust. Sci. 44, 40–102 (2014).
[Crossref]

Hanson, R. K.

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers,” Meas. Sci. Technol. 20(11), 115201 (2009).
[Crossref]

B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
[Crossref]

Hertz, H. M.

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of Laser-Induced Stimulated-Emission for Diagnostic Purposes,” Appl. Phys. B: Photophys. Laser Chem. 50(6), 487–497 (1990).
[Crossref]

Hole, O.

C. Brackmann, O. Hole, B. Zhou, Z. Li, and M. Aldén, “Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics,” Appl. Phys. B: Lasers Opt. 115(1), 25–33 (2014).
[Crossref]

Hovde, D. C.

Jeffries, J. B.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers,” Meas. Sci. Technol. 20(11), 115201 (2009).
[Crossref]

Jonsson, M.

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B: Lasers Opt. 115(1), 35–43 (2014).
[Crossref]

Katta, V. R.

Kearsley, D. T. B.

J. E. M. Goldsmith and D. T. B. Kearsley, “C2 Creation, Emission, and Laser-Induced Fluorescence in Flames and Cold Gases,” Appl. Phys. B: Photophys. Laser Chem. 50(5), 371–379 (1990).
[Crossref]

Kirby, B. J.

B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
[Crossref]

Kohse-Hoinghaus, K.

S. M. Sarathy, P. Osswald, N. Hansen, and K. Kohse-Hoinghaus, “Alcohol combustion chemistry,” Prog. Energy Combust. Sci. 44, 40–102 (2014).
[Crossref]

Kulatilaka, W. D.

Launay, F.

M. Eidelsberg, J. Y. Roncin, A. Lefloch, F. Launay, C. Letzelter, and J. Rostas, “Reinvestigation of the Vacuum Ultraviolet-Spectrum of Co and Isotopic-Species - the B1Σ+ ↔X1Σ+ Transition,” J. Mol. Spectrosc. 121(2), 309–336 (1987).
[Crossref]

Lefloch, A.

T. George, W. Urban, and A. Lefloch, “Improved Mass-Independent Dunham Parameters for the Ground-State of CO and Calibration Frequencies for the Fundamental-Band,” J. Mol. Spectrosc. 165(2), 500–505 (1994).
[Crossref]

M. Eidelsberg, J. Y. Roncin, A. Lefloch, F. Launay, C. Letzelter, and J. Rostas, “Reinvestigation of the Vacuum Ultraviolet-Spectrum of Co and Isotopic-Species - the B1Σ+ ↔X1Σ+ Transition,” J. Mol. Spectrosc. 121(2), 309–336 (1987).
[Crossref]

Legros, G.

Lempert, W. R.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[Crossref]

Letzelter, C.

M. Eidelsberg, J. Y. Roncin, A. Lefloch, F. Launay, C. Letzelter, and J. Rostas, “Reinvestigation of the Vacuum Ultraviolet-Spectrum of Co and Isotopic-Species - the B1Σ+ ↔X1Σ+ Transition,” J. Mol. Spectrosc. 121(2), 309–336 (1987).
[Crossref]

Li, B.

Li, X. F.

Li, Y.

Y. Li, C. W. Zhou, K. P. Somers, K. W. Zhang, and H. J. Curran, “The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene,” Proc. Combust. Inst. 36(1), 403–411 (2017).
[Crossref]

Li, Z.

C. Brackmann, O. Hole, B. Zhou, Z. Li, and M. Aldén, “Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics,” Appl. Phys. B: Lasers Opt. 115(1), 25–33 (2014).
[Crossref]

Li, Z. S.

Linne, M. A.

Liu, L. H.

Z. Qin, J. M. Zhao, and L. H. Liu, “Radiative transition probabilities for the main diatomic electronic systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 produced in plasma of atmospheric entry,” J. Quant. Spectrosc. Radiat. Transfer 202, 286–301 (2017).
[Crossref]

Maas, U.

J. Warnatz, U. Maas, and W.R. Dibble, Combustion : physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation (Springer, 2006).

Meyer, T. R.

Miles, R. B.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[Crossref]

Morin, C.

Nefedov, A. P.

Orain, M.

Osswald, P.

S. M. Sarathy, P. Osswald, N. Hansen, and K. Kohse-Hoinghaus, “Alcohol combustion chemistry,” Prog. Energy Combust. Sci. 44, 40–102 (2014).
[Crossref]

Patel, K. S.

Patterson, B. D.

Qin, Z.

Z. Qin, J. M. Zhao, and L. H. Liu, “Radiative transition probabilities for the main diatomic electronic systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 produced in plasma of atmospheric entry,” J. Quant. Spectrosc. Radiat. Transfer 202, 286–301 (2017).
[Crossref]

Rahman, K. A.

Richardson, D. R.

Richter, M.

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Aldén, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34(2), 3541–3548 (2013).
[Crossref]

Roncin, J. Y.

M. Eidelsberg, J. Y. Roncin, A. Lefloch, F. Launay, C. Letzelter, and J. Rostas, “Reinvestigation of the Vacuum Ultraviolet-Spectrum of Co and Isotopic-Species - the B1Σ+ ↔X1Σ+ Transition,” J. Mol. Spectrosc. 121(2), 309–336 (1987).
[Crossref]

Rosell, J.

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Aldén, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34(2), 3541–3548 (2013).
[Crossref]

Rostas, J.

M. Eidelsberg, J. Y. Roncin, A. Lefloch, F. Launay, C. Letzelter, and J. Rostas, “Reinvestigation of the Vacuum Ultraviolet-Spectrum of Co and Isotopic-Species - the B1Σ+ ↔X1Σ+ Transition,” J. Mol. Spectrosc. 121(2), 309–336 (1987).
[Crossref]

Roy, S.

Sarathy, S. M.

S. M. Sarathy, P. Osswald, N. Hansen, and K. Kohse-Hoinghaus, “Alcohol combustion chemistry,” Prog. Energy Combust. Sci. 44, 40–102 (2014).
[Crossref]

Settersten, T. B.

Silver, J. A.

Sinel’shchikov, V. A.

Sjoholm, J.

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Aldén, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34(2), 3541–3548 (2013).
[Crossref]

Slipchenko, M. N.

Smallwood, G. J.

H. S. Guo, K. A. Thomson, and G. J. Smallwood, “On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame,” Combust. Flame 156(6), 1135–1142 (2009).
[Crossref]

Somers, K. P.

Y. Li, C. W. Zhou, K. P. Somers, K. W. Zhang, and H. J. Curran, “The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene,” Proc. Combust. Inst. 36(1), 403–411 (2017).
[Crossref]

Thomson, K. A.

H. S. Guo, K. A. Thomson, and G. J. Smallwood, “On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame,” Combust. Flame 156(6), 1135–1142 (2009).
[Crossref]

Urban, W.

T. George, W. Urban, and A. Lefloch, “Improved Mass-Independent Dunham Parameters for the Ground-State of CO and Calibration Frequencies for the Fundamental-Band,” J. Mol. Spectrosc. 165(2), 500–505 (1994).
[Crossref]

Usachev, A. D.

Utsav, K. C.

Varghese, P. L.

Wallin, S.

M. Aldén, S. Wallin, and W. Wendt, “Applications of 2-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B: Photophys. Laser Chem. 33(4), 205–208 (1984).
[Crossref]

Wang, Y. J.

Y. J. Wang and W. D. Kulatilaka, “Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF),” Appl. Phys. B: Lasers Opt. 124(1), 8 (2018).
[Crossref]

Warnatz, J.

J. Warnatz, U. Maas, and W.R. Dibble, Combustion : physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation (Springer, 2006).

Wendt, W.

M. Aldén, S. Wallin, and W. Wendt, “Applications of 2-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B: Photophys. Laser Chem. 33(4), 205–208 (1984).
[Crossref]

Westblom, U.

U. Westblom, P. E. Bengtsson, and M. Aldén, “Carbon-Atom Fluorescence and C2 Emission Detected in Fuel-Rich Flames Using a Uv Laser,” Appl. Phys. B: Photophys. Laser Chem. 52(6), 371–375 (1991).
[Crossref]

U. Westblom, S. Agrup, M. Aldén, and P. Cederbalk, “Detection of Nitrogen-Atoms in Flames Using 2-Photon Laser-Induced Fluorescence and Investigations of Photochemical Effects,” Appl. Opt. 30(21), 2990–3002 (1991).
[Crossref]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of Laser-Induced Stimulated-Emission for Diagnostic Purposes,” Appl. Phys. B: Photophys. Laser Chem. 50(6), 487–497 (1990).
[Crossref]

M. Aldén, U. Westblom, and J. E. M. Goldsmith, “2-Photon-Excited Stimulated-Emission from Atomic Oxygen in Flames and Cold Gases,” Opt. Lett. 14(6), 305–307 (1989).
[Crossref]

Western, C. M.

C. M. Western, “PGOPHER: A program for simulating rotational, vibrational and electronic spectra,” J. Quant. Spectrosc. Radiat. Transfer 186, 221–242 (2017).
[Crossref]

Woolcock, P. J.

P. J. Woolcock and R. C. Brown, “A review of cleaning technologies for biomass-derived syngas,” Biomass Bioenergy 52, 54–84 (2013).
[Crossref]

Wu, Y.

Yao, M. F.

Zhang, D. Y.

Zhang, K. W.

Y. Li, C. W. Zhou, K. P. Somers, K. W. Zhang, and H. J. Curran, “The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene,” Proc. Combust. Inst. 36(1), 403–411 (2017).
[Crossref]

Zhang, Z. L.

Zhao, J. M.

Z. Qin, J. M. Zhao, and L. H. Liu, “Radiative transition probabilities for the main diatomic electronic systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 produced in plasma of atmospheric entry,” J. Quant. Spectrosc. Radiat. Transfer 202, 286–301 (2017).
[Crossref]

Zhou, B.

C. Brackmann, O. Hole, B. Zhou, Z. Li, and M. Aldén, “Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics,” Appl. Phys. B: Lasers Opt. 115(1), 25–33 (2014).
[Crossref]

Zhou, C. W.

Y. Li, C. W. Zhou, K. P. Somers, K. W. Zhang, and H. J. Curran, “The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene,” Proc. Combust. Inst. 36(1), 403–411 (2017).
[Crossref]

Zobnin, A. V.

Annu. Rev. Anal. Chem. (1)

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of Ultrafast Lasers for Optical Measurements in Combusting Flows,” Annu. Rev. Anal. Chem. 1(1), 663–687 (2008).
[Crossref]

Appl. Opt. (6)

Appl. Phys. B: Lasers Opt. (3)

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B: Lasers Opt. 115(1), 35–43 (2014).
[Crossref]

Y. J. Wang and W. D. Kulatilaka, “Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF),” Appl. Phys. B: Lasers Opt. 124(1), 8 (2018).
[Crossref]

C. Brackmann, O. Hole, B. Zhou, Z. Li, and M. Aldén, “Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics,” Appl. Phys. B: Lasers Opt. 115(1), 25–33 (2014).
[Crossref]

Appl. Phys. B: Photophys. Laser Chem. (4)

U. Westblom, P. E. Bengtsson, and M. Aldén, “Carbon-Atom Fluorescence and C2 Emission Detected in Fuel-Rich Flames Using a Uv Laser,” Appl. Phys. B: Photophys. Laser Chem. 52(6), 371–375 (1991).
[Crossref]

J. E. M. Goldsmith and D. T. B. Kearsley, “C2 Creation, Emission, and Laser-Induced Fluorescence in Flames and Cold Gases,” Appl. Phys. B: Photophys. Laser Chem. 50(5), 371–379 (1990).
[Crossref]

M. Aldén, S. Wallin, and W. Wendt, “Applications of 2-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B: Photophys. Laser Chem. 33(4), 205–208 (1984).
[Crossref]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of Laser-Induced Stimulated-Emission for Diagnostic Purposes,” Appl. Phys. B: Photophys. Laser Chem. 50(6), 487–497 (1990).
[Crossref]

Appl. Spectrosc. (1)

Biomass Bioenergy (1)

P. J. Woolcock and R. C. Brown, “A review of cleaning technologies for biomass-derived syngas,” Biomass Bioenergy 52, 54–84 (2013).
[Crossref]

Combust. Flame (1)

H. S. Guo, K. A. Thomson, and G. J. Smallwood, “On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame,” Combust. Flame 156(6), 1135–1142 (2009).
[Crossref]

J. Chem. Phys. (2)

T. B. Settersten, A. Dreizler, and R. L. Farrow, “Temperature- and species-dependent quenching of CO B probed by two-photon laser-induced fluorescence using a picosecond laser,” J. Chem. Phys. 117(7), 3173–3179 (2002).
[Crossref]

F. Di Teodoro and R. L. Farrow, “CO+ B2Σ+ (ν=0) emission induced by laser excitation of neutral CO at 230 nm,” J. Chem. Phys. 114(8), 3421–3428 (2001).
[Crossref]

J. Mol. Spectrosc. (2)

T. George, W. Urban, and A. Lefloch, “Improved Mass-Independent Dunham Parameters for the Ground-State of CO and Calibration Frequencies for the Fundamental-Band,” J. Mol. Spectrosc. 165(2), 500–505 (1994).
[Crossref]

M. Eidelsberg, J. Y. Roncin, A. Lefloch, F. Launay, C. Letzelter, and J. Rostas, “Reinvestigation of the Vacuum Ultraviolet-Spectrum of Co and Isotopic-Species - the B1Σ+ ↔X1Σ+ Transition,” J. Mol. Spectrosc. 121(2), 309–336 (1987).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Quant. Spectrosc. Radiat. Transfer (3)

G. J. Fiechtner and J. R. Gord, “Absorption and the dimensionless overlap integral for two-photon excitation,” J. Quant. Spectrosc. Radiat. Transfer 68(5), 543–557 (2001).
[Crossref]

Z. Qin, J. M. Zhao, and L. H. Liu, “Radiative transition probabilities for the main diatomic electronic systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 produced in plasma of atmospheric entry,” J. Quant. Spectrosc. Radiat. Transfer 202, 286–301 (2017).
[Crossref]

C. M. Western, “PGOPHER: A program for simulating rotational, vibrational and electronic spectra,” J. Quant. Spectrosc. Radiat. Transfer 186, 221–242 (2017).
[Crossref]

Meas. Sci. Technol. (2)

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[Crossref]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers,” Meas. Sci. Technol. 20(11), 115201 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. Combust. Inst. (3)

C. Brackmann, J. Sjoholm, J. Rosell, M. Richter, J. Bood, and M. Aldén, “Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO,” Proc. Combust. Inst. 34(2), 3541–3548 (2013).
[Crossref]

B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
[Crossref]

Y. Li, C. W. Zhou, K. P. Somers, K. W. Zhang, and H. J. Curran, “The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene,” Proc. Combust. Inst. 36(1), 403–411 (2017).
[Crossref]

Prog. Energy Combust. Sci. (2)

S. M. Sarathy, P. Osswald, N. Hansen, and K. Kohse-Hoinghaus, “Alcohol combustion chemistry,” Prog. Energy Combust. Sci. 44, 40–102 (2014).
[Crossref]

R. K. Hanson and D. F. Davidson, “Recent advances in laser absorption and shock tube methods for studies of combustion chemistry,” Prog. Energy Combust. Sci. 44, 103–114 (2014).
[Crossref]

Other (2)

J. Warnatz, U. Maas, and W.R. Dibble, Combustion : physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation (Springer, 2006).

“CHEMKIN-PRO 15101,” (Reaction Design, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Energy level diagrams for CO two-photon fluorescence. a) With optical transitions and wavelengths. b) With rate quantities for modeling.
Fig. 2.
Fig. 2. Fluorescence excitation spectra with a) ns laser excitation and b) fs laser excitation. In a) experimental data are shown at the top and a PGOPHER simulation is for clarity shown with negative intensity below. In b) experimental data are shown with circles and a PGOPHER simulation with solid line.
Fig. 3.
Fig. 3. CO fluorescence emission spectra with vibrational bands of the A1Π←B1Σ+ transition. Spectrum obtained with fs laser excitation in CH4-air flame (top) and from PGOPHER simulation at temperature 1700K (bottom). The strengths of vibrational bands in the simulated spectrum have been adjusted to match the experimental data and the spectrum has been plotted with negative intensities for easier comparison in the plot.
Fig. 4.
Fig. 4. Experimental (solid black lines) and modeled (dashed red lines) CO fluorescence profiles for CH4-air flames for equivalence ratios Φ=1.4, 1.2 and 1.0 with ns laser (a,c,e) and fs laser (b,d,f) excitation. The laser beam propagates from left to right and is focused at position x = 0 mm. Absorption results in asymmetric profiles and ionization at the beam focus introduces a loss mechanism and decreased signal. Further details are given in the Results section.
Fig. 5.
Fig. 5. Experimental (solid black line) and modeled (dashed red line) CO fluorescence profiles for a C2H4-air flame of equivalence ratio Φ=1.6 with ps laser excitation. The laser beam propagates from left to right and is focused at position x = 0 mm. Ionization at the beam focus introduces a loss mechanism and decreased signal.
Fig. 6.
Fig. 6. a) Simulated CO fluorescence profiles for fs laser excitation at CO concentrations between 0.5 and 5% at temperature 1700 K. b) Transmission, calculated as the ratio between the LIF signal at the two peaks of the profiles, versus CO concentration. A CO concentration in the range 1-2% results in 10% reduction in peak intensity.
Fig. 7.
Fig. 7. a) CO fluorescence profiles for fs laser excitation at pulse energies 3 and 8 µJ. Arrows indicate regions for evaluation of signal power dependence. Signal power dependence for fs laser pulse excitation at position -20 mm (b) and at the focus (c) of the fluorescence profile. Results from experiments and simulations are shown with circle and square symbols, respectively. Signals measured at −20 mm can be fitted to lines with slopes ∼2, indicating quadratic power dependence for the two-photon excitation. CO photoionization in the vicinity of the beam focus results in reduced power dependencies, slopes 0.56 and 0.35 for experiments and simulations, respectively.
Fig. 8.
Fig. 8. Simulated CO signal dependence on fs laser linewidth. Best spectral overlap with the CO Q-branch and signal generation is obtained for the spectrally narrowest, transform-limited, pulse.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N 1 d t = W 13 N 1 + ( Q 21 + A 21 ) N 2 + ( W 31 + Q 31 + A 31 ) N 3 d N 2 d t = ( Q 21 + A 21 ) N 2 + ( Q 32 + A 32 ) N 3 d N 3 d t = W 13 N 1 ( W 31 + Q 31 + A 31 + Q 32 + A 32 + P i o n ) N 3 d N 4 d t = P i o n N 3
W 13 = 2 σ 0 ϕ 0 2 G < 2 > Γ < 2 >
Γ < 2 > = f ( ν 1 ) f ( ν 2 ) g ( ν 1 + ν 2 ) d ν 1 d ν 2
P i o n = σ i o n ϕ 0
d ( z ) = M d 0 1 + ( λ z π ( d 0 2 ) 2 ) 2

Metrics