Abstract

We report a novel visible−near infrared photoMOSFET containing a self-organized, gate-stacking heterostructure of SiO2/Ge-dot/SiO2/SiGe-channel on Si substrate that is simultaneously fabricated in a single oxidation step. Our typical photoMOSFETs exhibit very large photoresponsivity of 1000−3000A/W at low optical power (< 0.1μW) or large photocurrent gain of 103−108A/A with a wide dynamic power range of at least 6 orders of magnitude (nW−mW) linearity at 400−1250 nm illumination, depending on whether the photoMOSFET operates at VG = + 3− + 4.5V or −1− + 1V. Numerical simulations reveal that photocarrier confinement within the Ge dots and the SiGe channel modifies the oxide field and the surface potential of SiGe, significantly increasing photocurrent and improving linearity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High responsivity SiGe heterojunction phototransistor on silicon photonics platform

V. Sorianello, G. De Angelis, A. De Iacovo, L. Colace, S. Faralli, and M. Romagnoli
Opt. Express 23(22) 28163-28169 (2015)

Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz
Opt. Express 17(7) 5193-5204 (2009)

Junction-less phototransistor with nanowire channels, a modeling study

Anita Fadavi Roudsari, Simarjeet S. Saini, Nixon O, and M. P. Anantram
Opt. Express 22(10) 12573-12582 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
  2. S. A. Srinivasan, M. Pantouvaki, S. Gupta, H. T. Chen, P. Verheyen, G. Lepage, G.r Roelkens, K. Saraswat, D. V. Thourhout, P. Absil, and J. V. Campenhout, “56 Gb/s germanium waveguide electro-absorption modulator,” J. Lightwave Technol. 34(2), 419–424 (2016).
  3. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
  4. G. Chen, Y. Yu, X. Xiao, and X. Zhang, “High speed and high power polarization insensitive germanium photodetector with lumped structure,” Opt. Express 24(9), 10030–10039 (2016).
    [PubMed]
  5. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
  6. V. Sorianello, G. De Angelis, A. De Iacovo, L. Colace, S. Faralli, and M. Romagnoli, “High responsivity SiGe heterojunction phototransistor on silicon photonics platform,” Opt. Express 23(22), 28163–28169 (2015).
    [PubMed]
  7. R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express 23(9), 11975–11984 (2015).
    [PubMed]
  8. A. M. Pravilov, Radiometry in Modern Scientific Experiments (Springer, 2011).
  9. W. T. Lai, K. C. Yang, P. H. Liao, T. George, and P. W. Li, “Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors,” Front. Mater. 3, 1–9 (2016).
  10. W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett. 10(1), 224 (2015).
    [PubMed]
  11. M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Sci. Rep. 7, 44402 (2017).
    [PubMed]
  12. M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
    [PubMed]
  13. T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, ““Symbiotic” semiconductors: unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D Appl. Phys. 50(10), 105101 (2017).
  14. F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
    [PubMed]
  15. S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors,” Appl. Phys. Lett. 109(5), 053508 (2016).
  16. J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguided integrated germanium JFET photodetector with improved speed performance,” IEEE Photonics Technol. Lett. 23(12), 765–767 (2011).
  17. R. W. Going, J. Loo, T. J. King, and M. C. Wu, “Germanium gate photoMOSFET integrated to silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).

2017 (2)

M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Sci. Rep. 7, 44402 (2017).
[PubMed]

T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, ““Symbiotic” semiconductors: unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D Appl. Phys. 50(10), 105101 (2017).

2016 (4)

S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors,” Appl. Phys. Lett. 109(5), 053508 (2016).

S. A. Srinivasan, M. Pantouvaki, S. Gupta, H. T. Chen, P. Verheyen, G. Lepage, G.r Roelkens, K. Saraswat, D. V. Thourhout, P. Absil, and J. V. Campenhout, “56 Gb/s germanium waveguide electro-absorption modulator,” J. Lightwave Technol. 34(2), 419–424 (2016).

G. Chen, Y. Yu, X. Xiao, and X. Zhang, “High speed and high power polarization insensitive germanium photodetector with lumped structure,” Opt. Express 24(9), 10030–10039 (2016).
[PubMed]

W. T. Lai, K. C. Yang, P. H. Liao, T. George, and P. W. Li, “Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors,” Front. Mater. 3, 1–9 (2016).

2015 (5)

W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett. 10(1), 224 (2015).
[PubMed]

V. Sorianello, G. De Angelis, A. De Iacovo, L. Colace, S. Faralli, and M. Romagnoli, “High responsivity SiGe heterojunction phototransistor on silicon photonics platform,” Opt. Express 23(22), 28163–28169 (2015).
[PubMed]

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express 23(9), 11975–11984 (2015).
[PubMed]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
[PubMed]

2014 (2)

R. W. Going, J. Loo, T. J. King, and M. C. Wu, “Germanium gate photoMOSFET integrated to silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).

2012 (1)

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

2011 (1)

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguided integrated germanium JFET photodetector with improved speed performance,” IEEE Photonics Technol. Lett. 23(12), 765–767 (2011).

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).

Absil, P.

Barkelid, M.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Buchs, G.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Buscema, M.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Campenhout, J. V.

Chang, C. W.

M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
[PubMed]

Chang, W. H.

M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
[PubMed]

Chen, G.

Chen, H. T.

Chen, K. H.

T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, ““Symbiotic” semiconductors: unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D Appl. Phys. 50(10), 105101 (2017).

Chen, Y. C.

M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
[PubMed]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Colace, L.

De Angelis, G.

De Iacovo, A.

Etaki, S.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Faralli, S.

Gao, Y.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

George, T.

T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, ““Symbiotic” semiconductors: unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D Appl. Phys. 50(10), 105101 (2017).

M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Sci. Rep. 7, 44402 (2017).
[PubMed]

W. T. Lai, K. C. Yang, P. H. Liao, T. George, and P. W. Li, “Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors,” Front. Mater. 3, 1–9 (2016).

W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett. 10(1), 224 (2015).
[PubMed]

Going, R.

Going, R. W.

R. W. Going, J. Loo, T. J. King, and M. C. Wu, “Germanium gate photoMOSFET integrated to silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Gupta, S.

Hartmann, J. M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Houtepen, A. J.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Hsu, K.

Hsu, T. C.

W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett. 10(1), 224 (2015).
[PubMed]

Hsu, T. M.

M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
[PubMed]

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

King, T. J.

R. W. Going, J. Loo, T. J. King, and M. C. Wu, “Germanium gate photoMOSFET integrated to silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).

Kuo, M. H.

M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Sci. Rep. 7, 44402 (2017).
[PubMed]

M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
[PubMed]

Kwong, D. L.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguided integrated germanium JFET photodetector with improved speed performance,” IEEE Photonics Technol. Lett. 23(12), 765–767 (2011).

Lai, W. T.

T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, ““Symbiotic” semiconductors: unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D Appl. Phys. 50(10), 105101 (2017).

W. T. Lai, K. C. Yang, P. H. Liao, T. George, and P. W. Li, “Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors,” Front. Mater. 3, 1–9 (2016).

W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett. 10(1), 224 (2015).
[PubMed]

M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
[PubMed]

Lee, M. C.

M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Sci. Rep. 7, 44402 (2017).
[PubMed]

Lee, S.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguided integrated germanium JFET photodetector with improved speed performance,” IEEE Photonics Technol. Lett. 23(12), 765–767 (2011).

Lepage, G.

Li, P. W.

M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Sci. Rep. 7, 44402 (2017).
[PubMed]

T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, ““Symbiotic” semiconductors: unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D Appl. Phys. 50(10), 105101 (2017).

W. T. Lai, K. C. Yang, P. H. Liao, T. George, and P. W. Li, “Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors,” Front. Mater. 3, 1–9 (2016).

W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett. 10(1), 224 (2015).
[PubMed]

M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
[PubMed]

Liao, P. H.

W. T. Lai, K. C. Yang, P. H. Liao, T. George, and P. W. Li, “Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors,” Front. Mater. 3, 1–9 (2016).

W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett. 10(1), 224 (2015).
[PubMed]

Lin, H. C.

M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Sci. Rep. 7, 44402 (2017).
[PubMed]

Liu, P.

S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors,” Appl. Phys. Lett. 109(5), 053508 (2016).

Lo, G.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguided integrated germanium JFET photodetector with improved speed performance,” IEEE Photonics Technol. Lett. 23(12), 765–767 (2011).

Loo, J.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express 23(9), 11975–11984 (2015).
[PubMed]

R. W. Going, J. Loo, T. J. King, and M. C. Wu, “Germanium gate photoMOSFET integrated to silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Pacifici, D.

S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors,” Appl. Phys. Lett. 109(5), 053508 (2016).

Pantouvaki, M.

Peng, K. P.

T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, ““Symbiotic” semiconductors: unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D Appl. Phys. 50(10), 105101 (2017).

Prins, F.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).

Roelkens, G.r

Romagnoli, M.

Saraswat, K.

Seldenthuis, J. S.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Seok, T. J.

Siebbeles, L. D. A.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Siontas, S.

S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors,” Appl. Phys. Lett. 109(5), 053508 (2016).

Sorianello, V.

Srinivasan, S. A.

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Thourhout, D. V.

van der Zant, H. S. J.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Verheyen, P.

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Wang, J.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguided integrated germanium JFET photodetector with improved speed performance,” IEEE Photonics Technol. Lett. 23(12), 765–767 (2011).

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

Wu, M. C.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express 23(9), 11975–11984 (2015).
[PubMed]

R. W. Going, J. Loo, T. J. King, and M. C. Wu, “Germanium gate photoMOSFET integrated to silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).

Xiao, X.

Yang, K. C.

W. T. Lai, K. C. Yang, P. H. Liao, T. George, and P. W. Li, “Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors,” Front. Mater. 3, 1–9 (2016).

W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett. 10(1), 224 (2015).
[PubMed]

Yu, M.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguided integrated germanium JFET photodetector with improved speed performance,” IEEE Photonics Technol. Lett. 23(12), 765–767 (2011).

Yu, Y.

Zaslavsky, A.

S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors,” Appl. Phys. Lett. 109(5), 053508 (2016).

Zhang, X.

Zwiller, V.

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Appl. Phys. Lett. (1)

S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors,” Appl. Phys. Lett. 109(5), 053508 (2016).

Front. Mater. (1)

W. T. Lai, K. C. Yang, P. H. Liao, T. George, and P. W. Li, “Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors,” Front. Mater. 3, 1–9 (2016).

IEEE J. Sel. Top. Quantum Electron. (1)

R. W. Going, J. Loo, T. J. King, and M. C. Wu, “Germanium gate photoMOSFET integrated to silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).

IEEE Photonics Technol. Lett. (1)

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguided integrated germanium JFET photodetector with improved speed performance,” IEEE Photonics Technol. Lett. 23(12), 765–767 (2011).

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

T. George, P. W. Li, K. H. Chen, K. P. Peng, and W. T. Lai, ““Symbiotic” semiconductors: unusual and counter-intuitive Ge/Si/O interactions,” J. Phys. D Appl. Phys. 50(10), 105101 (2017).

Nano Lett. (1)

F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett. 12(11), 5740–5743 (2012).
[PubMed]

Nanoscale Res. Lett. (1)

W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A unique approach to generate self-aligned SiO2/Ge/SiO2/SiGe gate-stacking heterostructures in a single fabrication step,” Nanoscale Res. Lett. 10(1), 224 (2015).
[PubMed]

Nanotechnology (1)

M. H. Kuo, W. T. Lai, T. M. Hsu, Y. C. Chen, C. W. Chang, W. H. Chang, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology 26(5), 055203 (2015).
[PubMed]

Nat. Photonics (2)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).

Opt. Express (3)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).

Sci. Rep. (1)

M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Sci. Rep. 7, 44402 (2017).
[PubMed]

Other (1)

A. M. Pravilov, Radiometry in Modern Scientific Experiments (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Our Ge-dot MOSFETs are composed of a self-organized, gate-stacking heterostructure of a SiO2/Ge-dot/SiO2/SiGe-channel. (a) 3D schematic diagram and cross-sectional scanning electron microscopic micrograph of MOSFET structures with 90nm-Ge dots that (b) are separated from a 20nm-thick Si1-xGex shell on the surface of a p-Si substrate by a 3.5nm-thick interfacial SiO2 layer as evidenced by EDX elemental x-ray mapping micrograph highlighting the presence of Ge, and (c) SAD pattern analysis confirms good crystallinity of the Si1-xGex shell.
Fig. 2
Fig. 2 (a) Experimentally-measured ID-VG characteristics of 90nm Ge-dot n-MOSFETs under variable-power 850nm illumination. (b) Large current gain was achieved for our Ge-dot MOSFETs when operating in both ON- and OFF-states. Inset shows that a wide dynamic range of photocurrent linearity of at least 6 decades is achievable for our Ge-dot MOSFET operating in the OFF-state, whereas a more limited range of linearity is measured for operation in the ON-state.
Fig. 3
Fig. 3 (a) Photoresponsivity -VG characteristics of 90nm Ge-dot n-PTs under PIN = 10nW, 600-1250nm illumination, and (b) Power-dependent photoresponsivity for the Ge-dot MOSFET operating in the ON-state and OFF-states for 850nm illumination.
Fig. 4
Fig. 4 Wavelength-dependent (a) photoresponsivity and (b) detectivity for 90nm Ge-dot n-MOSFETs operating in the OFF-state (VG = 0V), and ON-state (VG = + 3V) measured under 400−1550nm illumination. Both spectral behaviors follow the wavelength dependence of absorption coefficient of bulk Ge.
Fig. 5
Fig. 5 Calculated energy band diagrams and carrier concentrations for three different MOS structures: (a) ITO/SiO2/Si, (b) ITO/SiO2/Si0.5Ge0.5-on-Si, and (c) ITO/SiO2/Ge-dot/SiO2/Si0.5Ge0.5-on-Si, all devices operating at VG = + 3V both in the dark and under illumination, respectively. Solid and dashed lines denote potential energy and electron density for the MOSFETs operating in the dark and under 850nm illumination, respectively.
Fig. 6
Fig. 6 Calculated (a) carrier concentrations and (b) conduction-band potential energies of ITO/SiO2/Ge-dot/SiO2/Si0.5Ge0.5-on-Si operating at VG = + 3V in the dark and under variable power 850nm illumination. The inset in (b) is the enlarged diagram of conduction-band potential energy showing the surface potential energy near the SiO2/SiGe channel being effectively varied as a function of the incident optical power under 850nm illumination.
Fig. 7
Fig. 7 Calculated energy band diagrams and carrier concentrations for three different MOSFETs of (a) ITO/SiO2/Si, (b) ITO/SiO2/Si0.5Ge0.5-on-Si, and (c) ITO/SiO2/Ge-dot/SiO2/Si0.5Ge0.5-on-Si operating at VG = −2V in the dark and under illumination, respectively. Solid and dashed lines denote potential energy and electron density for the MOSFETs operating in the dark and under 850nm illumination, respectively.
Fig. 8
Fig. 8 Calculated (a) carrier concentration and (b) conduction-band potential energies for ITO/SiO2/Ge-dot/SiO2/Si0.5Ge0.5-on-Si MOSFETs operating at VG = −2V in the dark and under illumination, respectively. The inset in (b) is the enlarged diagram of conduction-band potential energy showing the surface potential energy near the SiO2/SiGe channel being effectively varied as a function of the incident optical power under 850nm illumination.
Fig. 9
Fig. 9 Simulated surface charge density per unit excitation optical power plotted as a function of the incident illumination power. Note the decrease of this parameter with increasing illumination power, which is in good agreement with our experimentally-observed results.

Tables (1)

Tables Icon

Table 1 Performance comparison of previously reported Ge phototransistors and our Ge-dot photoMOSFETs

Metrics