Abstract

This paper examines the design of a prototype of a single cell three-channel visible light communication (VLC) based on wavelength division multiplexing for a radio frequency (RF)-free indoor healthcare. For a low complexity application, a single red green blue (RGB)-type white light-emitting diode (LED) and a single color sensor are adopted. An active low pass filter is utilized for robust light detection to eliminate ambient light and low frequency noise. The incoming tri-color lights are separated by an adopted color sensor and simultaneously demodulated by a receiver processor. Then, the collected data are monitored in real-time and analyzed to provide the necessary medical attention to the concerned patient.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fine particulate matter monitoring via a visible light communication in DCT-based optical OFDM

Jinyoung An, Mohammad Abrar Shakil Sejan, and Wan-Young Chung
Opt. Express 27(10) 15062-15078 (2019)

Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED

Yuanquan Wang, Yiguang Wang, Nan Chi, Jianjun Yu, and Huiliang Shang
Opt. Express 21(1) 1203-1208 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. López, V. Custodio, and J. I. Moreno, “LOBIN: E-textile and wireless-sensor-network-based platform for healthcare monitoring in future hospital environments,” IEEE Trans. Inf. Technol. Biomed. 14(6), 1446–1458 (2010).
    [PubMed]
  2. A. Darwish and A. E. Hassanien, “Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring,” Sensors (Basel) 11(6), 5561–5595 (2011).
    [PubMed]
  3. A. Jovicic, J. Li, and T. Richardson, “Visible light communication: Opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 1–7 (2013).
  4. T. Yamazato and et al.., “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
  5. H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
  6. Z. Ong and W. Y. Chung, “Long Range VLC Temperature Monitoring System using CMOS of Mobile Device Camera,” IEEE Sensors J. 16(6), 1508–1509 (2016).
  7. N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24(19), 21663–21673 (2016).
    [PubMed]
  8. Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gbps RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13627–13633 (2015).
  9. B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
    [PubMed]
  10. D. R. Dhatchayeny, A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Experimental Biomedical EEG Signal Transmission Using VLC,” IEEE Sens. J. 15(10), 5386–5387 (2015).
  11. K. H. Lim, H. S. Lee, and W. Y. Chung, “Multichannel visible light communication with wavelength division for medical data transmission,” J Med. Imag. Health Inf. 5(8), 1947–1951 (2015).
  12. Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time Audio & Video Transmission System Based on Visible Light Communication,” Opt. Photonics J. 3(2), 153–157 (2013).
  13. S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources,” Optom. Vis. Sci. 68(8), 645–662 (1991).
    [PubMed]
  14. Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental Demonstration of VLC-based Vehicle-to-Vehicle Communications Under Fog Conditions,” IEEE Photonics J. 7(6), 1–9 (2015).
  15. J. Mullrich, H. Thurner, E. Mullner, and et al.., “High-gain transimpedance amplifier in InP-based HBT technology for the receiver in 40-Gb/s optical-fiber TDM links,” IEEE J. Solid-State Circuits 35(9), 1260–1265 (2000).

2016 (2)

Z. Ong and W. Y. Chung, “Long Range VLC Temperature Monitoring System using CMOS of Mobile Device Camera,” IEEE Sensors J. 16(6), 1508–1509 (2016).

N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24(19), 21663–21673 (2016).
[PubMed]

2015 (5)

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gbps RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13627–13633 (2015).

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[PubMed]

D. R. Dhatchayeny, A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Experimental Biomedical EEG Signal Transmission Using VLC,” IEEE Sens. J. 15(10), 5386–5387 (2015).

K. H. Lim, H. S. Lee, and W. Y. Chung, “Multichannel visible light communication with wavelength division for medical data transmission,” J Med. Imag. Health Inf. 5(8), 1947–1951 (2015).

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental Demonstration of VLC-based Vehicle-to-Vehicle Communications Under Fog Conditions,” IEEE Photonics J. 7(6), 1–9 (2015).

2014 (1)

T. Yamazato and et al.., “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).

2013 (3)

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: Opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 1–7 (2013).

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time Audio & Video Transmission System Based on Visible Light Communication,” Opt. Photonics J. 3(2), 153–157 (2013).

2011 (1)

A. Darwish and A. E. Hassanien, “Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring,” Sensors (Basel) 11(6), 5561–5595 (2011).
[PubMed]

2010 (1)

G. López, V. Custodio, and J. I. Moreno, “LOBIN: E-textile and wireless-sensor-network-based platform for healthcare monitoring in future hospital environments,” IEEE Trans. Inf. Technol. Biomed. 14(6), 1446–1458 (2010).
[PubMed]

2000 (1)

J. Mullrich, H. Thurner, E. Mullner, and et al.., “High-gain transimpedance amplifier in InP-based HBT technology for the receiver in 40-Gb/s optical-fiber TDM links,” IEEE J. Solid-State Circuits 35(9), 1260–1265 (2000).

1991 (1)

S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources,” Optom. Vis. Sci. 68(8), 645–662 (1991).
[PubMed]

Bailey, I. L.

S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources,” Optom. Vis. Sci. 68(8), 645–662 (1991).
[PubMed]

Berman, S. M.

S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources,” Optom. Vis. Sci. 68(8), 645–662 (1991).
[PubMed]

Cahyadi, W. A.

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental Demonstration of VLC-based Vehicle-to-Vehicle Communications Under Fog Conditions,” IEEE Photonics J. 7(6), 1–9 (2015).

Chi, N.

N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24(19), 21663–21673 (2016).
[PubMed]

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gbps RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13627–13633 (2015).

Chi, Y. C.

Chung, W. Y.

Z. Ong and W. Y. Chung, “Long Range VLC Temperature Monitoring System using CMOS of Mobile Device Camera,” IEEE Sensors J. 16(6), 1508–1509 (2016).

K. H. Lim, H. S. Lee, and W. Y. Chung, “Multichannel visible light communication with wavelength division for medical data transmission,” J Med. Imag. Health Inf. 5(8), 1947–1951 (2015).

Chung, Y. H.

D. R. Dhatchayeny, A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Experimental Biomedical EEG Signal Transmission Using VLC,” IEEE Sens. J. 15(10), 5386–5387 (2015).

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental Demonstration of VLC-based Vehicle-to-Vehicle Communications Under Fog Conditions,” IEEE Photonics J. 7(6), 1–9 (2015).

Clear, R. D.

S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources,” Optom. Vis. Sci. 68(8), 645–662 (1991).
[PubMed]

Custodio, V.

G. López, V. Custodio, and J. I. Moreno, “LOBIN: E-textile and wireless-sensor-network-based platform for healthcare monitoring in future hospital environments,” IEEE Trans. Inf. Technol. Biomed. 14(6), 1446–1458 (2010).
[PubMed]

Darwish, A.

A. Darwish and A. E. Hassanien, “Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring,” Sensors (Basel) 11(6), 5561–5595 (2011).
[PubMed]

Dhatchayeny, D. R.

D. R. Dhatchayeny, A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Experimental Biomedical EEG Signal Transmission Using VLC,” IEEE Sens. J. 15(10), 5386–5387 (2015).

Ding, L.

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time Audio & Video Transmission System Based on Visible Light Communication,” Opt. Photonics J. 3(2), 153–157 (2013).

Durán Retamal, J. R.

Gong, Y.

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time Audio & Video Transmission System Based on Visible Light Communication,” Opt. Photonics J. 3(2), 153–157 (2013).

Greenhouse, D. S.

S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources,” Optom. Vis. Sci. 68(8), 645–662 (1991).
[PubMed]

Han, S. K.

Hassanien, A. E.

A. Darwish and A. E. Hassanien, “Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring,” Sensors (Basel) 11(6), 5561–5595 (2011).
[PubMed]

He, J. H.

He, Y.

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time Audio & Video Transmission System Based on Visible Light Communication,” Opt. Photonics J. 3(2), 153–157 (2013).

Huang, X.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gbps RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13627–13633 (2015).

Janjua, B.

Jovicic, A.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: Opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 1–7 (2013).

Kim, D. R.

Kim, H. S.

Kim, Y. H.

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental Demonstration of VLC-based Vehicle-to-Vehicle Communications Under Fog Conditions,” IEEE Photonics J. 7(6), 1–9 (2015).

Kuo, H. C.

Lee, H. S.

K. H. Lim, H. S. Lee, and W. Y. Chung, “Multichannel visible light communication with wavelength division for medical data transmission,” J Med. Imag. Health Inf. 5(8), 1947–1951 (2015).

Li, J.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: Opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 1–7 (2013).

Lim, K. H.

K. H. Lim, H. S. Lee, and W. Y. Chung, “Multichannel visible light communication with wavelength division for medical data transmission,” J Med. Imag. Health Inf. 5(8), 1947–1951 (2015).

Lin, G. R.

López, G.

G. López, V. Custodio, and J. I. Moreno, “LOBIN: E-textile and wireless-sensor-network-based platform for healthcare monitoring in future hospital environments,” IEEE Trans. Inf. Technol. Biomed. 14(6), 1446–1458 (2010).
[PubMed]

Moreno, J. I.

G. López, V. Custodio, and J. I. Moreno, “LOBIN: E-textile and wireless-sensor-network-based platform for healthcare monitoring in future hospital environments,” IEEE Trans. Inf. Technol. Biomed. 14(6), 1446–1458 (2010).
[PubMed]

Mullner, E.

J. Mullrich, H. Thurner, E. Mullner, and et al.., “High-gain transimpedance amplifier in InP-based HBT technology for the receiver in 40-Gb/s optical-fiber TDM links,” IEEE J. Solid-State Circuits 35(9), 1260–1265 (2000).

Mullrich, J.

J. Mullrich, H. Thurner, E. Mullner, and et al.., “High-gain transimpedance amplifier in InP-based HBT technology for the receiver in 40-Gb/s optical-fiber TDM links,” IEEE J. Solid-State Circuits 35(9), 1260–1265 (2000).

Ng, T. K.

Ong, Z.

Z. Ong and W. Y. Chung, “Long Range VLC Temperature Monitoring System using CMOS of Mobile Device Camera,” IEEE Sensors J. 16(6), 1508–1509 (2016).

Ooi, B. S.

Oubei, H. M.

Raasch, T. W.

S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources,” Optom. Vis. Sci. 68(8), 645–662 (1991).
[PubMed]

Richardson, T.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: Opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 1–7 (2013).

Sewaiwar, A.

D. R. Dhatchayeny, A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Experimental Biomedical EEG Signal Transmission Using VLC,” IEEE Sens. J. 15(10), 5386–5387 (2015).

Shi, J.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gbps RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13627–13633 (2015).

Son, Y. H.

Tao, L.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gbps RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13627–13633 (2015).

Thurner, H.

J. Mullrich, H. Thurner, E. Mullner, and et al.., “High-gain transimpedance amplifier in InP-based HBT technology for the receiver in 40-Gb/s optical-fiber TDM links,” IEEE J. Solid-State Circuits 35(9), 1260–1265 (2000).

Tiwari, S. V.

D. R. Dhatchayeny, A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Experimental Biomedical EEG Signal Transmission Using VLC,” IEEE Sens. J. 15(10), 5386–5387 (2015).

Tsai, C. T.

Wang, H. Y.

Wang, Y.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gbps RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13627–13633 (2015).

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time Audio & Video Transmission System Based on Visible Light Communication,” Opt. Photonics J. 3(2), 153–157 (2013).

Yamazato, T.

T. Yamazato and et al.., “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).

Yang, S. H.

Zhang, M.

Zhao, J.

Zhou, Y.

IEEE Commun. Mag. (2)

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: Opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 1–7 (2013).

T. Yamazato and et al.., “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).

IEEE J. Solid-State Circuits (1)

J. Mullrich, H. Thurner, E. Mullner, and et al.., “High-gain transimpedance amplifier in InP-based HBT technology for the receiver in 40-Gb/s optical-fiber TDM links,” IEEE J. Solid-State Circuits 35(9), 1260–1265 (2000).

IEEE Photonics J. (1)

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental Demonstration of VLC-based Vehicle-to-Vehicle Communications Under Fog Conditions,” IEEE Photonics J. 7(6), 1–9 (2015).

IEEE Sens. J. (1)

D. R. Dhatchayeny, A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Experimental Biomedical EEG Signal Transmission Using VLC,” IEEE Sens. J. 15(10), 5386–5387 (2015).

IEEE Sensors J. (1)

Z. Ong and W. Y. Chung, “Long Range VLC Temperature Monitoring System using CMOS of Mobile Device Camera,” IEEE Sensors J. 16(6), 1508–1509 (2016).

IEEE Trans. Inf. Technol. Biomed. (1)

G. López, V. Custodio, and J. I. Moreno, “LOBIN: E-textile and wireless-sensor-network-based platform for healthcare monitoring in future hospital environments,” IEEE Trans. Inf. Technol. Biomed. 14(6), 1446–1458 (2010).
[PubMed]

J Med. Imag. Health Inf. (1)

K. H. Lim, H. S. Lee, and W. Y. Chung, “Multichannel visible light communication with wavelength division for medical data transmission,” J Med. Imag. Health Inf. 5(8), 1947–1951 (2015).

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Photonics J. (1)

Y. He, L. Ding, Y. Gong, and Y. Wang, “Real-time Audio & Video Transmission System Based on Visible Light Communication,” Opt. Photonics J. 3(2), 153–157 (2013).

Optom. Vis. Sci. (1)

S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources,” Optom. Vis. Sci. 68(8), 645–662 (1991).
[PubMed]

Sensors (Basel) (1)

A. Darwish and A. E. Hassanien, “Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring,” Sensors (Basel) 11(6), 5561–5595 (2011).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Single cell WDM-VLC system integrated into medical lighting facilities.
Fig. 2
Fig. 2 Single cell three-channel WDM-VLC system architecture.
Fig. 3
Fig. 3 Adopted lens and RGB illumination: (a) adhesive light diffuser (lens 1); (b) RGB transmission with lens 1 at distance of 1 m; (c) Fresnel lens (lens 2); (d) RGB transmission with lens 2 at 11-m distance.
Fig. 4
Fig. 4 Prototype of transmitter module with (a) adhesive light diffuser and (b) Fresnel lens.
Fig. 5
Fig. 5 Prototype of receiver module: (a) receiver container designed using 3D printer; (b) components of module: lens, optical detector circuit, and demodulator; (c) active LPF-based circuit for each color channel.
Fig. 6
Fig. 6 Frame format for transmission to monitoring system.
Fig. 7
Fig. 7 System evaluation: (a) experimental setup for single cell RGB-light transmission; (b) designed real-time monitoring system (PC version, monitoring of PPG, ECG, and body temperature at 11-m distance).
Fig. 8
Fig. 8 Measured light intensity under various conditions: (a) lens 1 (adhesive light diffuser); (b) lens 2 (Fresnel lens).
Fig. 9
Fig. 9 Oscilloscope output at distance of 11 m: (a) transmitted RGB signals; (b) received RGB signals; (c) optical signal detection with active LPF-based circuit.
Fig. 10
Fig. 10 PER evaluation with adhesive diffuser and Fresnel lens.

Tables (2)

Tables Icon

Table 1 Experimental parameters.

Tables Icon

Table 2 Comparison of proposed system and reference systems [10,11].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

HeartRate(Beatsperminute) = 60 R-RInterbals(s) .
SBP = αSBP×T2+βSBP
DBP = αDBP×T2+βDBP

Metrics