Abstract

Optical microcavity (OMC) structures have spectral properties that are directly related to their physical dimensions and material refractive indices. Their intrinsically fast optical response to mechanically-induced changes in these parameters makes OMCs uniquely suited for dynamic sensing when paired with a suitably fast streak camera and spectrograph. Various designs and processes of fabrication for asymmetrical OMC (AOMC) structures were investigated to optimize and assess their feasibility for dynamic sensing. Structural and material effects were studied in terms of spectral properties, structure stabilities and fabrication process. From this study, it was shown that an AOMC structure with a SiO2 cavity layer and Ag mirror layers, fabricated with thin adhesion Al2O3 layers exhibited the best structural stability and spectral properties. Under dynamic compressive loading of ~4 GPa, the structure exhibited a blueshift of 22 nm and a temporal response time of < 3.3 ns, thus demonstrating the potential of AOMC based dynamic pressure sensing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of distributed Bragg reflector multilayers for dynamic pressure sensing

Gyuhyon Lee, David A. Scripka, Brent Wagner, Naresh N. Thadhani, Zhitao Kang, and Christopher J. Summers
Opt. Express 25(22) 27067-27076 (2017)

Refractive index sensing using disk-hole coupling plasmonic structures fabricated on fiber facet

Shijie Li and Wen-Di Li
Opt. Express 25(23) 29380-29388 (2017)

Optical characterization of a GaAs/GaAlAs asymmetric microcavity structure

Der-Yuh Lin
Opt. Express 13(26) 10865-10872 (2005)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric current from shock‐loaded quartz—a submicrosecond stress gauge,” J. Appl. Phys. 36(5), 1775–1783 (1965).
    [Crossref]
  2. L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
    [Crossref]
  3. D. Goosman, “Measuring velocities by laser Doppler interferometry,” LLNL Energy and Technology Review UCRL-52000–79–3, 17–24 (1979).
  4. C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
    [Crossref]
  5. O. Strand, D. Goosman, C. Martinez, T. Whitworth, and W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
    [Crossref]
  6. D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54(4), 1717–1722 (1983).
    [Crossref]
  7. D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106(20), 201906 (2015).
    [Crossref]
  8. D. Scripka, G. LeCroy, G. Lee, C. Sun, Z. Kang, C. J. Summers, and N. N. Thadhani, “Spectral Response of Multilayer Optical Structures to Dynamic Loading,” in APS Shock Compression of Condensed Matter Meeting Abstracts, 2015), pp. 2007.
    [Crossref]
  9. S. Larouche and L. Martinu, “OpenFilters: open-source software for the design, optimization, and synthesis of optical filters,” Appl. Opt. 47(13), C219–C230 (2008).
    [Crossref] [PubMed]
  10. R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, “Micropillar Testing of Amorphous Silica,” Int. J. Appl. Glass Sci. 3(1), 36–43 (2012).
    [Crossref]
  11. W. D. Callister, Fundamentals of Materials Science and Engineering: An Integrated Approach WileyPlus (John Wiley and Sons, Incorporated, 2008).
  12. A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics (Cambridge University Press, 2010).
  13. S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54(3), 477–481 (2015).
    [Crossref]
  14. X. Xu, Z. Tang, J. Shao, and Z. Fan, “The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films,” Appl. Surf. Sci. 245(1-4), 11–15 (2005).
    [Crossref]
  15. L. M. Barker and R. E. Hollenbach, “Shock‐wave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41(10), 4208–4226 (1970).
    [Crossref]
  16. A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
    [Crossref] [PubMed]

2015 (3)

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106(20), 201906 (2015).
[Crossref]

S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54(3), 477–481 (2015).
[Crossref]

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

2012 (1)

R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, “Micropillar Testing of Amorphous Silica,” Int. J. Appl. Glass Sci. 3(1), 36–43 (2012).
[Crossref]

2008 (1)

2006 (1)

O. Strand, D. Goosman, C. Martinez, T. Whitworth, and W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

2005 (1)

X. Xu, Z. Tang, J. Shao, and Z. Fan, “The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films,” Appl. Surf. Sci. 245(1-4), 11–15 (2005).
[Crossref]

1988 (1)

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

1983 (1)

D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54(4), 1717–1722 (1983).
[Crossref]

1972 (1)

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]

1970 (1)

L. M. Barker and R. E. Hollenbach, “Shock‐wave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41(10), 4208–4226 (1970).
[Crossref]

1965 (1)

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric current from shock‐loaded quartz—a submicrosecond stress gauge,” J. Appl. Phys. 36(5), 1775–1783 (1965).
[Crossref]

Babar, S.

Barker, L. M.

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]

L. M. Barker and R. E. Hollenbach, “Shock‐wave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41(10), 4208–4226 (1970).
[Crossref]

Barthel, E.

R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, “Micropillar Testing of Amorphous Silica,” Int. J. Appl. Glass Sci. 3(1), 36–43 (2012).
[Crossref]

Benedick, W. B.

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric current from shock‐loaded quartz—a submicrosecond stress gauge,” J. Appl. Phys. 36(5), 1775–1783 (1965).
[Crossref]

Bloomquist, D.

D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54(4), 1717–1722 (1983).
[Crossref]

Bolme, C. A.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Chau, H.

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Chomienne, V.

R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, “Micropillar Testing of Amorphous Silica,” Int. J. Appl. Glass Sci. 3(1), 36–43 (2012).
[Crossref]

Collins, G. W.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Eggert, J. H.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Fan, Z.

X. Xu, Z. Tang, J. Shao, and Z. Fan, “The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films,” Appl. Surf. Sci. 245(1-4), 11–15 (2005).
[Crossref]

Fratanduono, D. E.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Galtier, E.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Gleason, A. E.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Goosman, D.

O. Strand, D. Goosman, C. Martinez, T. Whitworth, and W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Graham, R. A.

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric current from shock‐loaded quartz—a submicrosecond stress gauge,” J. Appl. Phys. 36(5), 1775–1783 (1965).
[Crossref]

Hawreliak, J.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Hollenbach, R. E.

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]

L. M. Barker and R. E. Hollenbach, “Shock‐wave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41(10), 4208–4226 (1970).
[Crossref]

Huen, T.

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Kermouche, G.

R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, “Micropillar Testing of Amorphous Silica,” Int. J. Appl. Glass Sci. 3(1), 36–43 (2012).
[Crossref]

Kraus, R. G.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Kuhlow, W.

O. Strand, D. Goosman, C. Martinez, T. Whitworth, and W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

Lacroix, R.

R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, “Micropillar Testing of Amorphous Silica,” Int. J. Appl. Glass Sci. 3(1), 36–43 (2012).
[Crossref]

Larouche, S.

LeCroy, G.

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106(20), 201906 (2015).
[Crossref]

Lee, H. J.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Mao, W. L.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Martinez, C.

O. Strand, D. Goosman, C. Martinez, T. Whitworth, and W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

Martinu, L.

McMillan, C.

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Milathianaki, D.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Nagler, B.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Neilson, F. W.

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric current from shock‐loaded quartz—a submicrosecond stress gauge,” J. Appl. Phys. 36(5), 1775–1783 (1965).
[Crossref]

Parker, N.

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Perry, S.

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Queste, S.

R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, “Micropillar Testing of Amorphous Silica,” Int. J. Appl. Glass Sci. 3(1), 36–43 (2012).
[Crossref]

Sandberg, R.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Scripka, D.

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106(20), 201906 (2015).
[Crossref]

Shao, J.

X. Xu, Z. Tang, J. Shao, and Z. Fan, “The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films,” Appl. Surf. Sci. 245(1-4), 11–15 (2005).
[Crossref]

Sheffield, S.

D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54(4), 1717–1722 (1983).
[Crossref]

Steinmetz, L.

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Strand, O.

O. Strand, D. Goosman, C. Martinez, T. Whitworth, and W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

Summers, C. J.

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106(20), 201906 (2015).
[Crossref]

Tang, Z.

X. Xu, Z. Tang, J. Shao, and Z. Fan, “The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films,” Appl. Surf. Sci. 245(1-4), 11–15 (2005).
[Crossref]

Teisseire, J.

R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, “Micropillar Testing of Amorphous Silica,” Int. J. Appl. Glass Sci. 3(1), 36–43 (2012).
[Crossref]

Thadhani, N. N.

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106(20), 201906 (2015).
[Crossref]

Weaver, J. H.

Whipkey, R.

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Whitworth, T.

O. Strand, D. Goosman, C. Martinez, T. Whitworth, and W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

Xu, X.

X. Xu, Z. Tang, J. Shao, and Z. Fan, “The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films,” Appl. Surf. Sci. 245(1-4), 11–15 (2005).
[Crossref]

Yang, W.

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106(20), 201906 (2015).
[Crossref]

Appl. Surf. Sci. (1)

X. Xu, Z. Tang, J. Shao, and Z. Fan, “The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films,” Appl. Surf. Sci. 245(1-4), 11–15 (2005).
[Crossref]

Int. J. Appl. Glass Sci. (1)

R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, “Micropillar Testing of Amorphous Silica,” Int. J. Appl. Glass Sci. 3(1), 36–43 (2012).
[Crossref]

J. Appl. Phys. (4)

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric current from shock‐loaded quartz—a submicrosecond stress gauge,” J. Appl. Phys. 36(5), 1775–1783 (1965).
[Crossref]

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]

L. M. Barker and R. E. Hollenbach, “Shock‐wave studies of PMMA, fused silica, and sapphire,” J. Appl. Phys. 41(10), 4208–4226 (1970).
[Crossref]

D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54(4), 1717–1722 (1983).
[Crossref]

Nat. Commun. (1)

A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, and W. L. Mao, “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

C. McMillan, D. Goosman, N. Parker, L. Steinmetz, H. Chau, T. Huen, R. Whipkey, and S. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

O. Strand, D. Goosman, C. Martinez, T. Whitworth, and W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

Other (4)

D. Goosman, “Measuring velocities by laser Doppler interferometry,” LLNL Energy and Technology Review UCRL-52000–79–3, 17–24 (1979).

W. D. Callister, Fundamentals of Materials Science and Engineering: An Integrated Approach WileyPlus (John Wiley and Sons, Incorporated, 2008).

A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics (Cambridge University Press, 2010).

D. Scripka, G. LeCroy, G. Lee, C. Sun, Z. Kang, C. J. Summers, and N. N. Thadhani, “Spectral Response of Multilayer Optical Structures to Dynamic Loading,” in APS Shock Compression of Condensed Matter Meeting Abstracts, 2015), pp. 2007.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of a SiO2 (or Al2O3) AOMC structure under dynamic loading experiment and the reflectance spectrum simulated for a Ag/SiO2/Ag AOMC with a 500 nm thick SiO2 cavity layer (continuous blue line), and after being compressed to the fracture limit (dotted red line). The inset depicts the calculated shift in the reflectance minimum due to the maximum static compression at the strain to failure point.
Fig. 2
Fig. 2 (a) Shape of reflectance spectra simulated for different modes of AOMCs tuned for reflectance minimum at 535 nm (b) dependence of FWHM and cavity thickness (as required to achieve a reflectance minimum at 535 nm) on cavity mode number.
Fig. 3
Fig. 3 (a) Dependence of reflectivity of Ag mirror at 535 nm on Ag thickness (b) dependence of characteristic minimum (m = 3) FWHM and depth on Ag mirror layer 1 thickness for a fixed SiO2 cavity thickness of 500 nm and Ag mirror layer 2 thickness of 125nm; inset image shows zoomed in graph of a region of interest.
Fig. 4
Fig. 4 Reflectance spectra of the simulated design, fabricated structures and the fitted simulation based on experimental results of (a) SiO2 and (b) Al2O3 AOMC structures.
Fig. 5
Fig. 5 (a) Schematic of SiO2 AOMC structure fabricated using Al2O3 adhesion layers and (b) comparison of simulated and measured reflectance spectra of modified and the original SiO2 AOMC structure.
Fig. 6
Fig. 6 (a) Spectral and temporal response of a modified SiO2 AOMC device to a 4 GPa shock front. The spectra were recorded using a streak camera at different times to capture the shift in the reflectance minimum (mode 3) caused by the applied shock pressure. (b) The reflectance minimum over time and (c) change in the reflectance minimum position over time after shock propagation.

Tables (2)

Tables Icon

Table 1 Comparison between simulated and experimental spectral characteristics

Tables Icon

Table 2 Comparison of parameter values between simulated and measured spectra for both the original and modified SiO2 AOMC structures

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2nlcos( θ )=mλ
δλ= Δλ F
F= π ( R 1 R 2 ) 1/4 ( 1 ( R 1 R 2 ) 1/2 )
Δλ= λ o 2 2 n g lcos( θ )

Metrics