Abstract

We demonstrate electro-optical tuning of degenerate band edge resonances in Si photonic waveguides for applications including tunable filters, low voltage switches, and modulators. Carrier injection modulation is enabled by introducing periodic Si slabs to electrically connect the resonator to P and N dopants. Measured devices yield a large DC tunability of 7.1 nm/V and a peak switching slope of 206 dB/V. Digital data transmission measurements at 100 Mb/s show 3 dB of switching with a swing voltage of 6.8 mV, 91.4 aJ/bit switching energy, and 1.08 pJ/bit holding energy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Degenerate band edge resonances in periodic silicon ridge waveguides

Michael G. Wood, Justin R. Burr, and Ronald M. Reano
Opt. Lett. 40(11) 2493-2496 (2015)

Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy

Abdul Shakoor, Kengo Nozaki, Eiichi Kuramochi, Katsuhiko Nishiguchi, Akihiko Shinya, and Masaya Notomi
Opt. Express 22(23) 28623-28634 (2014)

Bistability suppression and low threshold switching using frozen light at a degenerate band edge waveguide

Nadav Gutman, Andrey A. Sukhorukov, Falk Eilenberger, and C. Martijn de Sterke
Opt. Express 20(24) 27363-27368 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  2. A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22(23), 28623–28634 (2014).
    [Crossref] [PubMed]
  3. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
    [Crossref]
  4. A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photonics Rev. 5(2), 201–213 (2011).
    [Crossref]
  5. S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
    [Crossref] [PubMed]
  6. J. R. Burr and R. M. Reano, “Zero-coupling-gap degenerate band edge resonators in silicon photonics,” Opt. Express 23(24), 30933–30942 (2015).
    [Crossref] [PubMed]
  7. M. G. Wood, J. R. Burr, and R. M. Reano, “Degenerate band edge resonances in periodic silicon ridge waveguides,” Opt. Lett. 40(11), 2493–2496 (2015).
    [Crossref] [PubMed]
  8. A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036619 (2005).
    [Crossref] [PubMed]
  9. P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
    [Crossref] [PubMed]
  10. M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93(2), 024301 (2016).
    [Crossref]
  11. A. A. Sukhorukov, C. J. Handmer, C. M. de Sterke, and M. J. Steel, “Slow light with flat or offset band edges in few-mode fiber with two gratings,” Opt. Express 15(26), 17954–17959 (2007).
    [Crossref] [PubMed]
  12. N. Gutman, C. M. de Sterke, A. A. Sukhorukov, and L. C. Botten, “Slow and frozen light in optical waveguides with multiple gratings: degenerate band edges and stationary inflection points,” Phys. Rev. A 85(3), 033804 (2012).
    [Crossref]
  13. A. A. Sukhorukov, A. V. Lavrinenko, D. N. Chigrin, D. E. Pelinovsky, and Y. S. Kivshar, “Slow-light dispersion in coupled periodic waveguides,” J. Opt. Soc. Am. B 25(12), C65–C74 (2008).
    [Crossref]
  14. J. R. Burr, N. Gutman, C. M. de Sterke, I. Vitebskiy, and R. M. Reano, “Degenerate band edge resonances in coupled periodic silicon optical waveguides,” Opt. Express 21(7), 8736–8745 (2013).
    [Crossref] [PubMed]
  15. J. R. Burr, M. G. Wood, and R. M. Reano, “Fifth power scaling of quality factor in silicon photonic degenerate band edge resonators,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu3M.2.
  16. M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
    [Crossref]
  17. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref] [PubMed]
  18. M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20(10), 10591–10596 (2012).
    [Crossref] [PubMed]
  19. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
    [Crossref] [PubMed]
  20. R. Wu, C.-H. Chen, J.-M. Fedeli, M. Fournier, K.-T. Cheng, and R. G. Beausoleil, “Compact models for carrier-injection silicon microring modulators,” Opt. Express 23(12), 15545–15554 (2015).
    [Crossref] [PubMed]
  21. S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21(13), 16210–16221 (2013).
    [Crossref] [PubMed]
  22. Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
    [Crossref]
  23. R. Soref and J. Hendrickson, “Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N x N switching, logic, and wavelength multiplexing,” Opt. Express 23(25), 32582–32596 (2015).
    [Crossref] [PubMed]
  24. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref] [PubMed]
  25. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
    [Crossref] [PubMed]
  26. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
    [Crossref] [PubMed]
  27. S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” Group IV Photonics proceedings 2010.
  28. J. R. Burr, “Degenerate band edge resonators in silicon photonics,” PhD thesis, The Ohio State University (2015).
  29. S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
    [Crossref]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  31. F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
    [Crossref]
  32. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  33. M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophotonics 8(1), 083098 (2014).
    [Crossref]
  34. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
    [Crossref] [PubMed]
  35. M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express 20(1), 164–172 (2012).
    [Crossref] [PubMed]
  36. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  37. M. Wojdyr, “Fityk: A general-purpose peak fitting program,” J. Appl. Cryst. 43(5), 1126–1128 (2010).
    [Crossref]
  38. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref] [PubMed]
  39. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  40. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16 x 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19(3), 371–379 (2001).
    [Crossref]

2016 (1)

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93(2), 024301 (2016).
[Crossref]

2015 (5)

2014 (3)

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophotonics 8(1), 083098 (2014).
[Crossref]

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22(23), 28623–28634 (2014).
[Crossref] [PubMed]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

2013 (4)

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21(13), 16210–16221 (2013).
[Crossref] [PubMed]

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

J. R. Burr, N. Gutman, C. M. de Sterke, I. Vitebskiy, and R. M. Reano, “Degenerate band edge resonances in coupled periodic silicon optical waveguides,” Opt. Express 21(7), 8736–8745 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photonics Rev. 5(2), 201–213 (2011).
[Crossref]

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
[Crossref] [PubMed]

2008 (2)

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

A. A. Sukhorukov, A. V. Lavrinenko, D. N. Chigrin, D. E. Pelinovsky, and Y. S. Kivshar, “Slow-light dispersion in coupled periodic waveguides,” J. Opt. Soc. Am. B 25(12), C65–C74 (2008).
[Crossref]

2007 (2)

2006 (1)

2005 (2)

A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036619 (2005).
[Crossref] [PubMed]

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

2001 (2)

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Ahn, B.-H.

Akagawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Akiyama, S.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Alipuor-Banaei, H.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Al-Saadi, A.

Andalib, A.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Asghari, M.

Baba, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Beausoleil, R. G.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Botten, L. C.

N. Gutman, C. M. de Sterke, A. A. Sukhorukov, and L. C. Botten, “Slow and frozen light in optical waveguides with multiple gratings: degenerate band edges and stationary inflection points,” Phys. Rev. A 85(3), 033804 (2012).
[Crossref]

Bouville, D.

Bruce, D.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

Burr, J. R.

Capolino, F.

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93(2), 024301 (2016).
[Crossref]

Cassan, E.

Chen, C.-H.

Chen, L.

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophotonics 8(1), 083098 (2014).
[Crossref]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
[Crossref] [PubMed]

Cheng, K.-T.

Chigrin, D. N.

Crozat, P.

Cui, K.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

de Sterke, C. M.

Dong, P.

Ebrahimy, M. N.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Eichler, H. J.

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fedeli, J.-M.

Fédéli, J.-M.

Feng, D.

Feng, N.-N.

Feng, X.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Figotin, A.

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93(2), 024301 (2016).
[Crossref]

A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photonics Rev. 5(2), 201–213 (2011).
[Crossref]

A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036619 (2005).
[Crossref] [PubMed]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Fournier, M.

Franke, B. A.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

Goh, T.

Gutman, N.

J. R. Burr, N. Gutman, C. M. de Sterke, I. Vitebskiy, and R. M. Reano, “Degenerate band edge resonances in coupled periodic silicon optical waveguides,” Opt. Express 21(7), 8736–8745 (2013).
[Crossref] [PubMed]

N. Gutman, C. M. de Sterke, A. A. Sukhorukov, and L. C. Botten, “Slow and frozen light in optical waveguides with multiple gratings: degenerate band edges and stationary inflection points,” Phys. Rev. A 85(3), 033804 (2012).
[Crossref]

Handmer, C. J.

Hattori, K.

Hendrickson, J.

Himeno, A.

Hirayama, N.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Horikawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Huang, Y.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Huang, Z.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Imai, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Jeong, K.-Y.

Jessop, P. E.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

Joannopoulos, J.

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Johnson, S.

Kim, J.-Y.

Kim, K. S.

Kim, S.

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Kivshar, Y. S.

Knights, A. P.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

Koshino, K.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Krishnamoorthy, A. V.

Kupijai, S.

Kuramochi, E.

Lavrinenko, A. V.

Lee, Y.-H.

Li, G.

Liang, H.

Liao, S.

Lipson, M.

Liu, F.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Manipatruni, S.

Marris-Morini, D.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

McFaul, S.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

Meister, S.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Nishiguchi, K.

Noguchi, Y.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Notomi, M.

Nozaki, K.

Ohmori, Y.

Okuno, M.

Orafaei, H.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Othman, M. A. K.

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93(2), 024301 (2016).
[Crossref]

Pelinovsky, D. E.

Poon, A. W.

Preston, K.

Rasigade, G.

Reano, R. M.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

Rhee, H.

Richter, H. H.

Rowe, L.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

Schmidt, B.

Schneider, T.

Seki, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Shafiiha, R.

Shah Hosseini, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Shakoor, A.

Shakya, J.

Sheehan, P. E.

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

Shinya, A.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Soref, R.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Steel, M. J.

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Stolarek, D.

Sukhorukov, A. A.

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Sun, P.

Tarr, N. G.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

Theiss, C.

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tian, H.

Tillack, B.

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Toyama, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Usuki, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Vitebskiy, I.

J. R. Burr, N. Gutman, C. M. de Sterke, I. Vitebskiy, and R. M. Reano, “Degenerate band edge resonances in coupled periodic silicon optical waveguides,” Opt. Express 21(7), 8736–8745 (2013).
[Crossref] [PubMed]

A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photonics Rev. 5(2), 201–213 (2011).
[Crossref]

A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036619 (2005).
[Crossref] [PubMed]

Vivien, L.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Whitman, L. J.

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

Woggon, U.

Wojdyr, M.

M. Wojdyr, “Fityk: A general-purpose peak fitting program,” J. Appl. Cryst. 43(5), 1126–1128 (2010).
[Crossref]

Wood, M.

Wood, M. G.

M. G. Wood, J. R. Burr, and R. M. Reano, “Degenerate band edge resonances in periodic silicon ridge waveguides,” Opt. Lett. 40(11), 2493–2496 (2015).
[Crossref] [PubMed]

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophotonics 8(1), 083098 (2014).
[Crossref]

Wu, R.

Xu, Q.

Yasu, M.

Yazdi, F.

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93(2), 024301 (2016).
[Crossref]

Zhang, D.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Zhang, W.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Zhao, Q.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Zheng, X.

Zhou, L.

Ziebell, M.

Zimmermann, L.

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401611 (2013).
[Crossref]

IEEE Photonics J. (1)

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

J. Appl. Cryst. (1)

M. Wojdyr, “Fityk: A general-purpose peak fitting program,” J. Appl. Cryst. 43(5), 1126–1128 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Nanophotonics (1)

M. G. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophotonics 8(1), 083098 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photonics Rev. 5(2), 201–213 (2011).
[Crossref]

Nano Lett. (1)

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Nature (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Opt. Express (16)

R. Soref and J. Hendrickson, “Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N x N switching, logic, and wavelength multiplexing,” Opt. Express 23(25), 32582–32596 (2015).
[Crossref] [PubMed]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
[Crossref] [PubMed]

L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
[Crossref] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref] [PubMed]

P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
[Crossref] [PubMed]

M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express 20(1), 164–172 (2012).
[Crossref] [PubMed]

M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20(10), 10591–10596 (2012).
[Crossref] [PubMed]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[Crossref] [PubMed]

R. Wu, C.-H. Chen, J.-M. Fedeli, M. Fournier, K.-T. Cheng, and R. G. Beausoleil, “Compact models for carrier-injection silicon microring modulators,” Opt. Express 23(12), 15545–15554 (2015).
[Crossref] [PubMed]

S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21(13), 16210–16221 (2013).
[Crossref] [PubMed]

J. R. Burr, N. Gutman, C. M. de Sterke, I. Vitebskiy, and R. M. Reano, “Degenerate band edge resonances in coupled periodic silicon optical waveguides,” Opt. Express 21(7), 8736–8745 (2013).
[Crossref] [PubMed]

A. A. Sukhorukov, C. J. Handmer, C. M. de Sterke, and M. J. Steel, “Slow light with flat or offset band edges in few-mode fiber with two gratings,” Opt. Express 15(26), 17954–17959 (2007).
[Crossref] [PubMed]

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22(23), 28623–28634 (2014).
[Crossref] [PubMed]

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011).
[Crossref] [PubMed]

J. R. Burr and R. M. Reano, “Zero-coupling-gap degenerate band edge resonators in silicon photonics,” Opt. Express 23(24), 30933–30942 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. A (1)

N. Gutman, C. M. de Sterke, A. A. Sukhorukov, and L. C. Botten, “Slow and frozen light in optical waveguides with multiple gratings: degenerate band edges and stationary inflection points,” Phys. Rev. A 85(3), 033804 (2012).
[Crossref]

Phys. Rev. B (1)

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93(2), 024301 (2016).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036619 (2005).
[Crossref] [PubMed]

Physica E (1)

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Proc. SPIE (1)

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[Crossref]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib/wire waveguides for silicon photonic circuits,” Group IV Photonics proceedings 2010.

J. R. Burr, “Degenerate band edge resonators in silicon photonics,” PhD thesis, The Ohio State University (2015).

J. R. Burr, M. G. Wood, and R. M. Reano, “Fifth power scaling of quality factor in silicon photonic degenerate band edge resonators,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu3M.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a)-(c) Schematics of the carrier injection PIN electro-optic degenerate band edge modulator in silicon photonics. The cross-sectional view in (c) is taken along the vertical dotted line shown in (b). The bilayer oxide cladding is not shown in (a) or (b) for clarity.
Fig. 2
Fig. 2 Design of a DBE cavity with periodic Si slabs for carrier injection. Blue and orange bands are the first and second propagating TE modes, respectively. We design for quartic dispersion in the orange band for resonances near a wavelength of 1550 nm. Gray bands are TM modes which do not play a role in device operation near the band edge under TE excitation. The simulated geometry is shown in each inset with colors matching the legend in Fig. 1. The right column shows magnified views of the dashed regions in the left column. (a-b) RBE design without Si slabs and no longitudinal offset, sL = 0 nm, z0 = 0 nm; (c-d) Longitudinal offset added to create a DBE, sL = 0 nm, z0 = 90 nm; (e-f) DBE design from (c) with 100 nm periodic slabs added for carrier injection, sL = 100 nm, z0 = 90 nm.
Fig. 3
Fig. 3 Impact of periodic Si slab width, sL, in a N = 30 period cavity. Wider slabs move the cavity away from the DBE condition while decreasing electrical resistance. (a-b) FDTD field distribution at the first band edge resonance in a cavity without periodic slabs and with 100 nm wide slabs placed at the nulls of the field, respectively. Colors in the schematic match the legend of Fig. 1. White lines indicate waveguide or slab sidewalls. (c) Field intensity for the fundamental cavity mode sampled along the upper sidewall of the multimode waveguide as sL is increased. The periodic nulls of the cavity mode are clearly visible. (d) FDTD transmission spectra as a function of sL. (e) Simulated differential resistance as a function of sL.
Fig. 4
Fig. 4 Simulated DBE tuning performance. (a) PIN diode IV curve for N = 30. (b) Transmission response with applied bias. (c) DBE resonance DC tuning for the device in (b). (d) Peak switching slope with N.
Fig. 5
Fig. 5 Cross-section images of fabrication process.
Fig. 6
Fig. 6 Angled-view SEM of a fabricated device with 20 periods after both Si etch steps and ion implantation.
Fig. 7
Fig. 7 (a) and (b) Normalized optical transmission spectra with Fano resonance fits for devices with 20 and 30 periods, respectively. (c) Q scaling for simulated and measured devices showing a transition from N3 to N5 at 20 periods.
Fig. 8
Fig. 8 (a) DC characterization measurement setup. (b) PIN IV curve for a 30 period device. (c) Resonance tuning with applied DC bias. The dashed vertical black line at 1558.2 nm corresponds to a 10.2 dB change in transmission due to a 100 mV change in applied bias.
Fig. 9
Fig. 9 Analysis of DC tuning results from Fig. 8(c). (a) Position of first band edge resonance shows a linear tunability of 7.09 nm/V. (b) Peak switching slope versus applied DC bias.
Fig. 10
Fig. 10 RF measurements setup.
Fig. 11
Fig. 11 Measurement of extinction ratio as a function of RF swing voltage. All data taken at 100 Mb/s data rate and all images have time scale with 5 ns/div. (a) 62.9 mV, 500 μW/div; (b) 31.5 mV, 500 μW/div; (c) 20 mV, 346 μW/div; (d) 6.8 mV, 440 μW/div; (e) 5 mV, 252 μW/div; (f) Complete ER data as a function of applied swing voltage. The dashed black line indicates a 3 dB ER.
Fig. 12
Fig. 12 Eye diagram measurements at increased data rates. All images have a horizontal timescale of 2 ns/div and a vertical power scale of 500 μW/div. Data is taken with a 31.5 mV switching voltage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E H = V DC I DC ( Bit rate ) ,
E S = 1 4 Q S V PP = 1 4 ( I high I low ) τ fall V PP ,

Metrics