Abstract

A novel 2D-surface shock pressure sensor is designed and tested based on 1D-Photonic Crystal, i.e., Distributed Bragg Reflector Multilayer (DBR/ML) structures. The fast opto-mechanical response of these structures to changes in layer thicknesses and refractive indices are ideally suited for dynamic pressure sensing. They offer the potential to minimize acoustic impedance mismatch between the material layers, and most importantly, the potential to monitor both temporal and spatial (lateral) variations during shock compression. In this feasibility study, different materials and device designs are investigated to identify material/device design combinations with optimum response to dynamic loading. Structural and material effects are studied in terms of spectral and mechanical properties, structure stability, and the ease of fabrication process. Structures comprising of different numbers of SiO1.5/SiO1.7 bilayer stacks are modeled, and fabricated. A 10-bilayer structure placed under a dynamic compressive load of ~7.2 GPa, exhibits a blueshift of 29 nm with a response time of ~5 ns which is well within the shock pressure rise time measured with PDV velocimetry. This promising result successfully demonstrates the feasibility of the specifically designed DBR/ML structure as a dynamic pressure sensor.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetrical optical microcavity structures for dynamic pressure sensing: design, fabrication, validation

Gyuhyon Lee, David A. Scripka, Zhitao Kang, Naresh N. Thadhani, and Christopher J. Summers
Opt. Express 24(20) 23494-23504 (2016)

Ultra-short distributed Bragg reflector fiber laser for sensing applications

Yang Zhang, Bai-Ou Guan, and Hwa-Yaw Tam
Opt. Express 17(12) 10050-10055 (2009)

Solgel grating waveguides for distributed Bragg reflector lasers

M. A. Fardad, H. Luo, Y. Beregovski, and M. Fallahi
Opt. Lett. 24(7) 460-462 (1999)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric Current from Shock‐Loaded Quartz—A Submicrosecond Stress Gauge,” J. Appl. Phys. 36, 1775–1783 (1965).
  2. L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).
  3. D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).
  4. A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).
  5. R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).
  6. D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106, 201906 (2015).
  7. G. Lee, D. A. Scripka, Z. Kang, N. N. Thadhani, and C. J. Summers, “Asymmetrical optical microcavity structures for dynamic pressure sensing: design, fabrication, validation,” Opt. Express 24(20), 23494–23504 (2016).
    [PubMed]
  8. R. B. Ross, Metallic Materials Specification Handbook (Springer US, 2013).
  9. A. I. H. Committee, Properties and Selection: Nonferrous Alloys and Special- Purpose Materials (ASM International, 1990).
  10. A. Nayar, The Metals Databook (McGraw-Hill, 1997).
  11. D. R. Lide, CRC Handbook of Chemistry and Physics, 85th Edition (Taylor & Francis, 2004).
  12. M. Bauccio, ASM engineered materials reference book (ASM International, 1994).
  13. S. M. A. Durrani, M. F. Al-Kuhaili, and E. E. Khawaja, “Characterization of thin films of a-SiO x (1.1< x <2.0) prepared by reactive evaporation of SiO,” J. Phys. Condens. Matter 15, 8123 (2003).
  14. S. Larouche and L. Martinu, “OpenFilters: open-source software for the design, optimization, and synthesis of optical filters,” Appl. Opt. 47(13), C219–C230 (2008).
    [PubMed]
  15. C. J. R. Sheppard, “Approximate calculation of the reflection coefficient from a stratified medium,” J. Euro. Opt. Soc. Part A 4, 665 (1995).
  16. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
    [PubMed]
  17. A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).
  18. L. R. Brovelli and U. Keller, “Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media,” Opt. Commun. 116, 343–350 (1995).
  19. R. E. Setchell, “Index of refraction of shock‐compressed fused silica and sapphire,” J. Appl. Phys. 50(12), 8186–8192 (1979).

2016 (1)

2015 (1)

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106, 201906 (2015).

2014 (2)

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

2010 (1)

2008 (1)

2003 (2)

A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).

S. M. A. Durrani, M. F. Al-Kuhaili, and E. E. Khawaja, “Characterization of thin films of a-SiO x (1.1< x <2.0) prepared by reactive evaporation of SiO,” J. Phys. Condens. Matter 15, 8123 (2003).

1995 (2)

L. R. Brovelli and U. Keller, “Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media,” Opt. Commun. 116, 343–350 (1995).

C. J. R. Sheppard, “Approximate calculation of the reflection coefficient from a stratified medium,” J. Euro. Opt. Soc. Part A 4, 665 (1995).

1983 (1)

D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).

1979 (1)

R. E. Setchell, “Index of refraction of shock‐compressed fused silica and sapphire,” J. Appl. Phys. 50(12), 8186–8192 (1979).

1972 (1)

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).

1965 (1)

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric Current from Shock‐Loaded Quartz—A Submicrosecond Stress Gauge,” J. Appl. Phys. 36, 1775–1783 (1965).

Al-Kuhaili, M. F.

S. M. A. Durrani, M. F. Al-Kuhaili, and E. E. Khawaja, “Characterization of thin films of a-SiO x (1.1< x <2.0) prepared by reactive evaporation of SiO,” J. Phys. Condens. Matter 15, 8123 (2003).

Álvarez, A. L.

A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).

Appelbaum, G.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).

Barker, L. M.

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).

Baumberg, J. J.

Benedick, W. B.

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric Current from Shock‐Loaded Quartz—A Submicrosecond Stress Gauge,” J. Appl. Phys. 36, 1775–1783 (1965).

Berkovic, G.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).

Bloomquist, D.

D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).

Brovelli, L. R.

L. R. Brovelli and U. Keller, “Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media,” Opt. Commun. 116, 343–350 (1995).

Dattelbaum, D. M.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

Durrani, S. M. A.

S. M. A. Durrani, M. F. Al-Kuhaili, and E. E. Khawaja, “Characterization of thin films of a-SiO x (1.1< x <2.0) prepared by reactive evaporation of SiO,” J. Phys. Condens. Matter 15, 8123 (2003).

Fernández de Ávila, S.

A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).

Gefen, A. F.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).

Gibbons, N.

Gibson, L. L.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

Glam, B.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).

Graham, R. A.

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric Current from Shock‐Loaded Quartz—A Submicrosecond Stress Gauge,” J. Appl. Phys. 36, 1775–1783 (1965).

Grover, M.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

Hollenbach, R. E.

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).

Kang, Z.

Keller, U.

L. R. Brovelli and U. Keller, “Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media,” Opt. Commun. 116, 343–350 (1995).

Khawaja, E. E.

S. M. A. Durrani, M. F. Al-Kuhaili, and E. E. Khawaja, “Characterization of thin films of a-SiO x (1.1< x <2.0) prepared by reactive evaporation of SiO,” J. Phys. Condens. Matter 15, 8123 (2003).

Kolle, M.

Lalone, B. M.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

Larouche, S.

LeCroy, G.

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106, 201906 (2015).

Lee, G.

Mallavia, R.

A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).

Martinu, L.

Neilson, F. W.

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric Current from Shock‐Loaded Quartz—A Submicrosecond Stress Gauge,” J. Appl. Phys. 36, 1775–1783 (1965).

Ravid, A.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).

Rodriguez, G.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

Sánchez-López, M. M.

A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).

Sandberg, R. L.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

Scripka, D.

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106, 201906 (2015).

Scripka, D. A.

Setchell, R. E.

R. E. Setchell, “Index of refraction of shock‐compressed fused silica and sapphire,” J. Appl. Phys. 50(12), 8186–8192 (1979).

Shafir, E.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).

Sheffield, S.

D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).

Sheppard, C. J. R.

C. J. R. Sheppard, “Approximate calculation of the reflection coefficient from a stratified medium,” J. Euro. Opt. Soc. Part A 4, 665 (1995).

Steiner, U.

Stevens, G. D.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

Summers, C. J.

G. Lee, D. A. Scripka, Z. Kang, N. N. Thadhani, and C. J. Summers, “Asymmetrical optical microcavity structures for dynamic pressure sensing: design, fabrication, validation,” Opt. Express 24(20), 23494–23504 (2016).
[PubMed]

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106, 201906 (2015).

Thadhani, N. N.

G. Lee, D. A. Scripka, Z. Kang, N. N. Thadhani, and C. J. Summers, “Asymmetrical optical microcavity structures for dynamic pressure sensing: design, fabrication, validation,” Opt. Express 24(20), 23494–23504 (2016).
[PubMed]

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106, 201906 (2015).

Tito, J.

A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).

Udd, E.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

Vaello, M. B.

A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).

Velásquez, P.

A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).

Zheng, B.

Zilberman, S.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Scripka, G. LeCroy, C. J. Summers, and N. N. Thadhani, “Spectral response of multilayer optical structures to dynamic mechanical loading,” Appl. Phys. Lett. 106, 201906 (2015).

J. Appl. Phys. (4)

R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric Current from Shock‐Loaded Quartz—A Submicrosecond Stress Gauge,” J. Appl. Phys. 36, 1775–1783 (1965).

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43, 4669–4675 (1972).

D. Bloomquist and S. Sheffield, “Optically recording interferometer for velocity measurements with subnanosecond resolution,” J. Appl. Phys. 54, 1717–1722 (1983).

R. E. Setchell, “Index of refraction of shock‐compressed fused silica and sapphire,” J. Appl. Phys. 50(12), 8186–8192 (1979).

J. Euro. Opt. Soc. Part A (1)

C. J. R. Sheppard, “Approximate calculation of the reflection coefficient from a stratified medium,” J. Euro. Opt. Soc. Part A 4, 665 (1995).

J. Phys. Condens. Matter (1)

S. M. A. Durrani, M. F. Al-Kuhaili, and E. E. Khawaja, “Characterization of thin films of a-SiO x (1.1< x <2.0) prepared by reactive evaporation of SiO,” J. Phys. Condens. Matter 15, 8123 (2003).

J. Phys. Conf. Ser. (2)

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. F. Gefen, “Fibre Bragg Grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500, 142029 (2014).

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500, 142031 (2014).

Opt. Commun. (1)

L. R. Brovelli and U. Keller, “Simple analytical expressions for the reflectivity and the penetration depth of a Bragg mirror between arbitrary media,” Opt. Commun. 116, 343–350 (1995).

Opt. Express (2)

Thin Solid Films (1)

A. L. Álvarez, J. Tito, M. B. Vaello, P. Velásquez, R. Mallavia, M. M. Sánchez-López, and S. Fernández de Ávila, “Polymeric multilayers for integration into photonic devices,” Thin Solid Films 433, 277–280 (2003).

Other (5)

R. B. Ross, Metallic Materials Specification Handbook (Springer US, 2013).

A. I. H. Committee, Properties and Selection: Nonferrous Alloys and Special- Purpose Materials (ASM International, 1990).

A. Nayar, The Metals Databook (McGraw-Hill, 1997).

D. R. Lide, CRC Handbook of Chemistry and Physics, 85th Edition (Taylor & Francis, 2004).

M. Bauccio, ASM engineered materials reference book (ASM International, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of a SiOA/SiOB DBR structure designed for dynamic loading experiments showing the geometrical arrangements for shock wave generation and optical characterization in reflection.
Fig. 2
Fig. 2 (a) Reflectance spectra of DBRs simulated for different optical modes with reflectance peaks at 500 nm for 5 and 10 bilayers, respectively; (b) Effect of numbers of bilayers and mode number on FWHM (blue) and total device thickness (red). For each mode, the thickness of each layer in the bilayer was obtained using Eq. (1) assuming the same optical path length for each layer. The total thickness of the device for each mode, m, for a different number of BLs was calculated using Eq. (3).
Fig. 3
Fig. 3 (a) Reflectance spectra simulated for a 10 bilayer DBR tuned to position the 3rd order mode reflectance peak at 500 nm for different bilayer refractive indices; (b) Dependence of FWHM (blue) and peak reflectance (red) on the refractive index difference of the bilayers
Fig. 4
Fig. 4 Reflectance spectra of (a) 10 BLs and (b) 5 BLs fabricated DBR structures showing comparisons to the simulated reflectance spectra with same peak position using mode number m = 3 and Δn = 0.1.
Fig. 5
Fig. 5 (a) Time resolved reflectance spectrum of a 10 BL DBR structure taken by the streak camera/spectrograph, successfully capturing the shift in reflectance peak caused by an applied shock pressure of ~7.2 GPa and (b) the corresponding blueshift of the reflectance peak (blue solid curve) and the velocity profile from the PDV velocimetry measurement (red dashed curve).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m λ m =2( n A d A + n B d B ), m is an odd inteder
R [ ( n B 2N n A 2N )/( n B 2N n A 2N ) ] 2
LN( d A + d B )+ d A
FWHM=Δλ= 4 π arcsin( n B n A n B + n A ),for m=1

Metrics