Abstract

The combination of ZnO, InN, and GaN epitaxial layers is explored to provide long wavelength photodetection capability in the GaN based materials. Growth temperature optimization was performed to obtain the best quality of InN epitaxial layer in the MOCVD system. The temperature dependent photoluminescence (PL) can provide the information about thermal quenching in the InN PL transitions and at least two non-radiative processes can be observed. X-ray diffraction and energy dispersive spectroscopy are applied to confirm the inclusion of indium and the formation of InN layer. The band alignment of such system shows a typical double heterojunction, which is preferred in optoelectronic device operation. The photodetector manufactured by this ZnO/GaN/InN layer can exhibit extended long-wavelength quantum efficiency, as high as 3.55%, and very strong photocurrent response under solar simulator illumination.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced photocurrent of a nitride–based photodetector with InN dot-like structures

Lung-Hsing Hsu, Chien-Chung Lin, Hau-Vei Han, Da-Wei Lin, Yen-Hua Lo, Yi-Chia Hwang, and Hao-Chung Kuo
Opt. Mater. Express 4(12) 2565-2573 (2014)

Exciton localization and ultralow onset ultraviolet emission in ZnO nanopencils-based heterojunction diodes

Junyan Jiang, Yuantao Zhang, Chen Chi, Yan Long, Xu Han, Bin Wu, Baolin Zhang, and Guotong Du
Opt. Express 24(18) 20938-20946 (2016)

Investigation of high indium-composition InGaN/GaN heterostructures on ZnO grown by metallic organic chemical vapor deposition

M. Tian, Y. D. Qian, C. Zhang, L. Li, S. D. Yao, I. T. Ferguson, D. N. Talwar, J. Y. Zhai, D. H. Meng, K. Y. He, L. Y. Wan, and Z. C. Feng
Opt. Mater. Express 8(10) 3184-3196 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert, Light Emitting Diodes, 2nd ed. (Cambridge, U.K.: Cambridge Univ. Press, 2003).
  2. C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
    [Crossref]
  3. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, 2nd ed. (Berlin, Germany: Springer-Verlag, 2000).
  4. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
    [Crossref]
  5. C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
    [Crossref]
  6. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
    [Crossref]
  7. Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
    [Crossref]
  8. H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
    [Crossref]
  9. L.-H. Hsu, C.-C. Lin, H.-V. Han, D.-W. Lin, Y.-H. Lo, Y.-C. Hwang, and H.-C. Kuo, “Enhanced photocurrent of a nitride-based photodetector with InN dot-like structures,” Opt. Mater. Express 4(12), 2565–2573 (2014).
    [Crossref]
  10. A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
    [Crossref]
  11. K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
    [Crossref]
  12. C.-H. Chen, K.-R. Wang, S.-Y. Tsai, H.-J. Chien, and S.-L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49(4), 04DG06 (2010).
    [Crossref]
  13. J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
    [Crossref]
  14. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
    [Crossref]
  15. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246 (2002).
    [Crossref]
  16. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779 (2003).
    [Crossref]
  17. K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
    [Crossref]
  18. J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
    [Crossref]
  19. B. H. Le, S. Zhao, N. H. Tran, and Z. Mi, “Electrically injected near-infrared light emission from single InN nanowire p-i-n diode,” Appl. Phys. Lett. 105(23), 231124 (2014).
    [Crossref]
  20. H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
    [Crossref]
  21. W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
    [Crossref]
  22. T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
    [Crossref]
  23. R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
    [Crossref] [PubMed]
  24. S. Zhao, X. Liu, and Z. Mi, “Photoluminescence properties of Mg-doped InN nanowires,” Appl. Phys. Lett. 103(20), 203113 (2013).
    [Crossref]
  25. S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
    [Crossref] [PubMed]
  26. N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, “Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity,” Chem. Mater. 22(16), 4769–4775 (2010).
    [Crossref]
  27. Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
    [Crossref]
  28. J. Kamimura, K. Kishino, and A. Kikuchi, “Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth,” J. Appl. Phys. 117(8), 084314 (2015).
    [Crossref]
  29. A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
    [Crossref]
  30. T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
    [Crossref]
  31. Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
    [Crossref]
  32. J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, “Thickness Dependence of Structural and Electrical Properties of Thin InN Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 52(8S), 08JD06 (2013).
    [Crossref]
  33. W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
    [Crossref]
  34. B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
    [Crossref]
  35. R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. 93(11), 8918–8925 (2003).
    [Crossref]
  36. W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
    [Crossref]
  37. N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
    [Crossref]
  38. J. Segura-Ruiz, N. Garro, A. Cantarero, C. Denker, J. Malindretos, and A. Rizzi, “Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation,” Phys. Rev. B 79(11), 115305 (2009).
    [Crossref]
  39. A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
    [Crossref]
  40. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
    [Crossref]
  41. C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
    [Crossref]
  42. S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
    [Crossref]
  43. C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76(12), 1570 (2000).
    [Crossref]
  44. B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
    [Crossref]
  45. J. D. Lambkin, L. Considine, S. Walsh, G. M. O’Connor, C. J. McDonagh, and T. J. Glynn, “Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P,” Appl. Phys. Lett. 65(1), 73–75 (1994).
    [Crossref]
  46. M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992).
    [Crossref] [PubMed]
  47. S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
    [Crossref]
  48. Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
    [Crossref]
  49. D. W. Jenkins and J. D. Dow, “Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN,” Phys. Rev. B Condens. Matter 39(5), 3317–3329 (1989).
    [Crossref] [PubMed]
  50. X. M. Duan and C. Stampfl, “Vacancies and interstitials in indium nitride: Vacancy clustering and molecular bondlike formation from first principles,” Phys. Rev. B 79(17), 174202 (2009).
    [Crossref]
  51. G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
    [Crossref]
  52. M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, “Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements,” Phys. Rev. B 77(24), 245207 (2008).
    [Crossref]
  53. P.-C. Wei, S. Chattopadhyay, F.-S. Lin, C.-M. Hsu, S. Jou, J.-T. Chen, P.-J. Huang, H.-C. Hsu, H.-C. Shih, K.-H. Chen, and L.-C. Chen, “Origin of the anomalous temperature evolution of photoluminescence peak energy in degenerate InN nanocolumns,” Opt. Express 17(14), 11690–11697 (2009).
    [Crossref] [PubMed]
  54. S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
    [Crossref]
  55. X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
    [Crossref]
  56. H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
    [Crossref]
  57. B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
    [Crossref]

2015 (1)

J. Kamimura, K. Kishino, and A. Kikuchi, “Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth,” J. Appl. Phys. 117(8), 084314 (2015).
[Crossref]

2014 (2)

B. H. Le, S. Zhao, N. H. Tran, and Z. Mi, “Electrically injected near-infrared light emission from single InN nanowire p-i-n diode,” Appl. Phys. Lett. 105(23), 231124 (2014).
[Crossref]

L.-H. Hsu, C.-C. Lin, H.-V. Han, D.-W. Lin, Y.-H. Lo, Y.-C. Hwang, and H.-C. Kuo, “Enhanced photocurrent of a nitride-based photodetector with InN dot-like structures,” Opt. Mater. Express 4(12), 2565–2573 (2014).
[Crossref]

2013 (9)

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

S. Zhao, X. Liu, and Z. Mi, “Photoluminescence properties of Mg-doped InN nanowires,” Appl. Phys. Lett. 103(20), 203113 (2013).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, “Thickness Dependence of Structural and Electrical Properties of Thin InN Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 52(8S), 08JD06 (2013).
[Crossref]

W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
[Crossref]

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

2012 (4)

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

2011 (5)

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
[Crossref]

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

2010 (4)

C.-H. Chen, K.-R. Wang, S.-Y. Tsai, H.-J. Chien, and S.-L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49(4), 04DG06 (2010).
[Crossref]

Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
[Crossref]

N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, “Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity,” Chem. Mater. 22(16), 4769–4775 (2010).
[Crossref]

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

2009 (5)

J. Segura-Ruiz, N. Garro, A. Cantarero, C. Denker, J. Malindretos, and A. Rizzi, “Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation,” Phys. Rev. B 79(11), 115305 (2009).
[Crossref]

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

X. M. Duan and C. Stampfl, “Vacancies and interstitials in indium nitride: Vacancy clustering and molecular bondlike formation from first principles,” Phys. Rev. B 79(17), 174202 (2009).
[Crossref]

P.-C. Wei, S. Chattopadhyay, F.-S. Lin, C.-M. Hsu, S. Jou, J.-T. Chen, P.-J. Huang, H.-C. Hsu, H.-C. Shih, K.-H. Chen, and L.-C. Chen, “Origin of the anomalous temperature evolution of photoluminescence peak energy in degenerate InN nanocolumns,” Opt. Express 17(14), 11690–11697 (2009).
[Crossref] [PubMed]

X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

2008 (4)

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, “Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements,” Phys. Rev. B 77(24), 245207 (2008).
[Crossref]

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

2007 (2)

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

2006 (3)

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

2005 (3)

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

2004 (2)

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

2003 (3)

R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. 93(11), 8918–8925 (2003).
[Crossref]

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779 (2003).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

2002 (1)

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246 (2002).
[Crossref]

2000 (1)

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76(12), 1570 (2000).
[Crossref]

1999 (1)

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

1998 (2)

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

1994 (1)

J. D. Lambkin, L. Considine, S. Walsh, G. M. O’Connor, C. J. McDonagh, and T. J. Glynn, “Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P,” Appl. Phys. Lett. 65(1), 73–75 (1994).
[Crossref]

1992 (1)

M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992).
[Crossref] [PubMed]

1989 (1)

D. W. Jenkins and J. D. Dow, “Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN,” Phys. Rev. B Condens. Matter 39(5), 3317–3329 (1989).
[Crossref] [PubMed]

Adelmann, C.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76(12), 1570 (2000).
[Crossref]

Ager, J. W.

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

Akasaki, I.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Amano, H.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Andreev, B. A.

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

Araki, T.

J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, “Thickness Dependence of Structural and Electrical Properties of Thin InN Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 52(8S), 08JD06 (2013).
[Crossref]

Arnaudov, B.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Beaumont, B.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Bhat, T. N.

B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
[Crossref]

Bhuiyan, A. G.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779 (2003).
[Crossref]

Böttcher, T.

R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. 93(11), 8918–8925 (2003).
[Crossref]

Butcher, K. S. A.

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

Buzynin, Y.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Cantarero, A.

J. Segura-Ruiz, N. Garro, A. Cantarero, C. Denker, J. Malindretos, and A. Rizzi, “Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation,” Phys. Rev. B 79(11), 115305 (2009).
[Crossref]

Chang, C. A.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Chang, C. Y.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Chang, C.-K.

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Chang, C.-Y.

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Chang, H. J.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Chang, J. R.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Chang, L.

W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
[Crossref]

Chang, W.-H.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chang, Y. A.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Chang, Y. L.

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

Chastaingt, B.

M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992).
[Crossref] [PubMed]

Chattopadhyay, S.

P.-C. Wei, S. Chattopadhyay, F.-S. Lin, C.-M. Hsu, S. Jou, J.-T. Chen, P.-J. Huang, H.-C. Hsu, H.-C. Shih, K.-H. Chen, and L.-C. Chen, “Origin of the anomalous temperature evolution of photoluminescence peak energy in degenerate InN nanocolumns,” Opt. Express 17(14), 11690–11697 (2009).
[Crossref] [PubMed]

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

Chen, C. Y.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chen, C.-C.

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Chen, C.-F.

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

Chen, C.-H.

C.-H. Chen, K.-R. Wang, S.-Y. Tsai, H.-J. Chien, and S.-L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49(4), 04DG06 (2010).
[Crossref]

Chen, C.-W.

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

Chen, H. C.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Chen, H.-C.

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Chen, J.-T.

Chen, K.-H.

P.-C. Wei, S. Chattopadhyay, F.-S. Lin, C.-M. Hsu, S. Jou, J.-T. Chen, P.-J. Huang, H.-C. Hsu, H.-C. Shih, K.-H. Chen, and L.-C. Chen, “Origin of the anomalous temperature evolution of photoluminescence peak energy in degenerate InN nanocolumns,” Opt. Express 17(14), 11690–11697 (2009).
[Crossref] [PubMed]

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

Chen, K.-J.

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Chen, L.-C.

P.-C. Wei, S. Chattopadhyay, F.-S. Lin, C.-M. Hsu, S. Jou, J.-T. Chen, P.-J. Huang, H.-C. Hsu, H.-C. Shih, K.-H. Chen, and L.-C. Chen, “Origin of the anomalous temperature evolution of photoluminescence peak energy in degenerate InN nanocolumns,” Opt. Express 17(14), 11690–11697 (2009).
[Crossref] [PubMed]

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

Chen, L.-J.

X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Chen, M.

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

Chen, M. C.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Chen, N. C.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Chen, W. C.

W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
[Crossref]

Chen, W. K.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chen, Y.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Chen, Y. F.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Cheng, Y. C.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chi, G. C.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Chichibu, S.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[Crossref]

Chien, H.-J.

C.-H. Chen, K.-R. Wang, S.-Y. Tsai, H.-J. Chien, and S.-L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49(4), 04DG06 (2010).
[Crossref]

Chierchia, R.

R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. 93(11), 8918–8925 (2003).
[Crossref]

Chiu, C. H.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Chiu, C.-H.

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Chocho, K.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Chou, W. C.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Chuang, K. L.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Colocci, M.

M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992).
[Crossref] [PubMed]

Considine, L.

J. D. Lambkin, L. Considine, S. Walsh, G. M. O’Connor, C. J. McDonagh, and T. J. Glynn, “Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P,” Appl. Phys. Lett. 65(1), 73–75 (1994).
[Crossref]

Cruz, S. C.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Dahal, R.

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

Dasgupta, N. P.

N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, “Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity,” Chem. Mater. 22(16), 4769–4775 (2010).
[Crossref]

Däubler, J.

M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, “Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements,” Phys. Rev. B 77(24), 245207 (2008).
[Crossref]

Daudin, B.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76(12), 1570 (2000).
[Crossref]

Davydov, V. Y.

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

DenBaars, S. P.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Denker, C.

J. Segura-Ruiz, N. Garro, A. Cantarero, C. Denker, J. Malindretos, and A. Rizzi, “Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation,” Phys. Rev. B 79(11), 115305 (2009).
[Crossref]

Deparis, C.

M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992).
[Crossref] [PubMed]

Dow, J. D.

D. W. Jenkins and J. D. Dow, “Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN,” Phys. Rev. B Condens. Matter 39(5), 3317–3329 (1989).
[Crossref] [PubMed]

Drozdov, Y.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Duan, X. M.

X. M. Duan and C. Stampfl, “Vacancies and interstitials in indium nitride: Vacancy clustering and molecular bondlike formation from first principles,” Phys. Rev. B 79(17), 174202 (2009).
[Crossref]

Einfeldt, S.

R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. 93(11), 8918–8925 (2003).
[Crossref]

Emtsev, V. V.

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

Fan, S.

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

Fan, X. W.

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

Feneberg, M.

M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, “Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements,” Phys. Rev. B 77(24), 245207 (2008).
[Crossref]

Feuillet, G.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76(12), 1570 (2000).
[Crossref]

Figge, S.

R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. 93(11), 8918–8925 (2003).
[Crossref]

Fischer, A. M.

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

Fishman, G.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76(12), 1570 (2000).
[Crossref]

Fu, C. P.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Fu, Y. K.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Fujii, T.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Fujioka, H.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Fujishima, T.

J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, “Thickness Dependence of Structural and Electrical Properties of Thin InN Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 52(8S), 08JD06 (2013).
[Crossref]

Garro, N.

J. Segura-Ruiz, N. Garro, A. Cantarero, C. Denker, J. Malindretos, and A. Rizzi, “Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation,” Phys. Rev. B 79(11), 115305 (2009).
[Crossref]

Gervais, G.

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

Gibart, P.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Glynn, T. J.

J. D. Lambkin, L. Considine, S. Walsh, G. M. O’Connor, C. J. McDonagh, and T. J. Glynn, “Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P,” Appl. Phys. Lett. 65(1), 73–75 (1994).
[Crossref]

Goldhahn, R.

M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, “Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements,” Phys. Rev. B 77(24), 245207 (2008).
[Crossref]

Golubev, S.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Grandjean, N.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Grützmacher, D.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Guo, H.

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

Gurioli, M.

M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992).
[Crossref] [PubMed]

Haab, A.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Haller, E. E.

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

Han, H. W.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Han, H.-V.

L.-H. Hsu, C.-C. Lin, H.-V. Han, D.-W. Lin, Y.-H. Lo, Y.-C. Hwang, and H.-C. Kuo, “Enhanced photocurrent of a nitride-based photodetector with InN dot-like structures,” Opt. Mater. Express 4(12), 2565–2573 (2014).
[Crossref]

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Hardtdegen, H.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Harima, H.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246 (2002).
[Crossref]

Hashimoto, A.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779 (2003).
[Crossref]

Heinke, H.

R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. 93(11), 8918–8925 (2003).
[Crossref]

Hommel, D.

R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. 93(11), 8918–8925 (2003).
[Crossref]

Hong, H. F.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Hong Tran, N.

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

Hsiao, C.-L.

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

Hsu, C.-M.

Hsu, G.-M.

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

Hsu, H.-C.

P.-C. Wei, S. Chattopadhyay, F.-S. Lin, C.-M. Hsu, S. Jou, J.-T. Chen, P.-J. Huang, H.-C. Hsu, H.-C. Shih, K.-H. Chen, and L.-C. Chen, “Origin of the anomalous temperature evolution of photoluminescence peak energy in degenerate InN nanocolumns,” Opt. Express 17(14), 11690–11697 (2009).
[Crossref] [PubMed]

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

Hsu, L.-H.

Huang, J.-K.

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Huang, P.-J.

Huang, W.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

Huang, Y.

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

Huy Le, B.

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

Hwang, J.-S.

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

Hwang, Y.-C.

Iwabuchi, T.

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Iza, M.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Jenkins, D. W.

D. W. Jenkins and J. D. Dow, “Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN,” Phys. Rev. B Condens. Matter 39(5), 3317–3329 (1989).
[Crossref] [PubMed]

Jiang, H.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Jiang, H. X.

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

Jones, R. E.

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

Jou, S.

Juday, R.

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

Kalghatgi, A. T.

B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
[Crossref]

Kamimura, J.

J. Kamimura, K. Kishino, and A. Kikuchi, “Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth,” J. Appl. Phys. 117(8), 084314 (2015).
[Crossref]

Kapitonov, V. A.

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

Katayama, R.

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

Kato, R.

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

Ke, W. C.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Kelchner, K. M.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Khrykin, O.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Kibria, M. G.

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

Kikuchi, A.

J. Kamimura, K. Kishino, and A. Kikuchi, “Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth,” J. Appl. Phys. 117(8), 084314 (2015).
[Crossref]

Kimura, T.

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

Kishino, K.

J. Kamimura, K. Kishino, and A. Kikuchi, “Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth,” J. Appl. Phys. 117(8), 084314 (2015).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Klochikhin, A. A.

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

Kobayashi, A.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Kozaki, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Krupanidhi, S. B.

B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
[Crossref]

Ku, C. S.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Kumar, M.

B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
[Crossref]

Kuo, C. H.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Kuo, C. W.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Kuo, H. C.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Kuo, H.-C.

L.-H. Hsu, C.-C. Lin, H.-V. Han, D.-W. Lin, Y.-H. Lo, Y.-C. Hwang, and H.-C. Kuo, “Enhanced photocurrent of a nitride-based photodetector with InN dot-like structures,” Opt. Mater. Express 4(12), 2565–2573 (2014).
[Crossref]

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Kuo, M.-Y.

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Kuo, S.-Y.

W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
[Crossref]

Kurimoto, E.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246 (2002).
[Crossref]

Kuritzky, L. Y.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Lai, F.-I.

W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
[Crossref]

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Lai, W. C.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Lai, W.-C.

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Lambkin, J. D.

J. D. Lambkin, L. Considine, S. Walsh, G. M. O’Connor, C. J. McDonagh, and T. J. Glynn, “Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P,” Appl. Phys. Lett. 65(1), 73–75 (1994).
[Crossref]

Lan, S. M.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Lan, Z.-H.

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

Le, B. H.

B. H. Le, S. Zhao, N. H. Tran, and Z. Mi, “Electrically injected near-infrared light emission from single InN nanowire p-i-n diode,” Appl. Phys. Lett. 105(23), 231124 (2014).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

Lee, J.-R.

N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, “Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity,” Chem. Mater. 22(16), 4769–4775 (2010).
[Crossref]

Lee, L.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Lee, M. C.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Lee, W.

N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, “Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity,” Chem. Mater. 22(16), 4769–4775 (2010).
[Crossref]

Leroux, M.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Li, B. H.

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

Li, D.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Li, J.

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

Li, S. X.

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

Li, Z.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Li, Z. Y.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Liliental-Weber, Z.

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

Lin, C. C.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Lin, C.-C.

L.-H. Hsu, C.-C. Lin, H.-V. Han, D.-W. Lin, Y.-H. Lo, Y.-C. Hwang, and H.-C. Kuo, “Enhanced photocurrent of a nitride-based photodetector with InN dot-like structures,” Opt. Mater. Express 4(12), 2565–2573 (2014).
[Crossref]

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Lin, D. W.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Lin, D.-W.

Lin, F.-S.

Lin, J. Y.

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

Lin, S. H.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Lin, T. Y.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Lin, W. J.

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

Liu, C.

Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
[Crossref]

Liu, D. P.

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

Liu, H.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Liu, X.

S. Zhao, X. Liu, and Z. Mi, “Photoluminescence properties of Mg-doped InN nanowires,” Appl. Phys. Lett. 103(20), 203113 (2013).
[Crossref]

Liu, X. D.

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

Liu, Y.

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

Lo, M. H.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Lo, Y.-H.

Lu, H.

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

Lu, M.-Y.

X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Lu, T. C.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Lukyanov, A.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Magnusson, B.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Malindretos, J.

J. Segura-Ruiz, N. Garro, A. Cantarero, C. Denker, J. Malindretos, and A. Rizzi, “Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation,” Phys. Rev. B 79(11), 115305 (2009).
[Crossref]

Mansfeld, D.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Marcinkevicius, S.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Martinez-Pastor, J.

M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992).
[Crossref] [PubMed]

Massies, J.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992).
[Crossref] [PubMed]

Matioli, E.

J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, “Thickness Dependence of Structural and Electrical Properties of Thin InN Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 52(8S), 08JD06 (2013).
[Crossref]

Matsuoka, T.

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246 (2002).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

McDonagh, C. J.

J. D. Lambkin, L. Considine, S. Walsh, G. M. O’Connor, C. J. McDonagh, and T. J. Glynn, “Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P,” Appl. Phys. Lett. 65(1), 73–75 (1994).
[Crossref]

Mi, Z.

B. H. Le, S. Zhao, N. H. Tran, and Z. Mi, “Electrically injected near-infrared light emission from single InN nanowire p-i-n diode,” Appl. Phys. Lett. 105(23), 231124 (2014).
[Crossref]

S. Zhao, X. Liu, and Z. Mi, “Photoluminescence properties of Mg-doped InN nanowires,” Appl. Phys. Lett. 103(20), 203113 (2013).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

Miao, G.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Mikulics, M.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Mishra, U. K.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Monemar, B.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Nakamura, S.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Nakao, M.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246 (2002).
[Crossref]

Nakarmi, M. L.

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

Nanishi, Y.

J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, “Thickness Dependence of Structural and Electrical Properties of Thin InN Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 52(8S), 08JD06 (2013).
[Crossref]

Nataf, G.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Nepal, N.

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

Neubert, S.

N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, “Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity,” Chem. Mater. 22(16), 4769–4775 (2010).
[Crossref]

Neufeld, C. J.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Nguyen, H. P. T.

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

O’Connor, G. M.

J. D. Lambkin, L. Considine, S. Walsh, G. M. O’Connor, C. J. McDonagh, and T. J. Glynn, “Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P,” Appl. Phys. Lett. 65(1), 73–75 (1994).
[Crossref]

Ohta, J.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Okamoto, H.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246 (2002).
[Crossref]

Oshima, M.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Paduano, Q. S.

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

Palacios, T.

J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, “Thickness Dependence of Structural and Electrical Properties of Thin InN Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 52(8S), 08JD06 (2013).
[Crossref]

Pan, C. J.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Pan, Y.

Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
[Crossref]

Pantha, B. N.

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

Park, J.

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

Paskov, P. P.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Paskova, T.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Pelekanos, N. T.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76(12), 1570 (2000).
[Crossref]

Peng, T.

Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
[Crossref]

Ponce, F. A.

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

Prasertsuk, K.

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

Prinz, F. B.

N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, “Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity,” Chem. Mater. 22(16), 4769–4775 (2010).
[Crossref]

Rajpalke, M. K.

B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
[Crossref]

Rizzi, A.

J. Segura-Ruiz, N. Garro, A. Cantarero, C. Denker, J. Malindretos, and A. Rizzi, “Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation,” Phys. Rev. B 79(11), 115305 (2009).
[Crossref]

Roul, B.

B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
[Crossref]

Ryu, H.

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

Sakaguchi, J.

J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, “Thickness Dependence of Structural and Electrical Properties of Thin InN Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 52(8S), 08JD06 (2013).
[Crossref]

Sakharov, A. V.

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

Sano, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Saraie, J.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

Sauer, R.

M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, “Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements,” Phys. Rev. B 77(24), 245207 (2008).
[Crossref]

Savard, M.

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

Schaff, W. J.

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

Schley, P.

M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, “Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements,” Phys. Rev. B 77(24), 245207 (2008).
[Crossref]

Schmidt, B. A.

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

Segura-Ruiz, J.

J. Segura-Ruiz, N. Garro, A. Cantarero, C. Denker, J. Malindretos, and A. Rizzi, “Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation,” Phys. Rev. B 79(11), 115305 (2009).
[Crossref]

Semond, F.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Shan, C. X.

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

Shan, W.

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

Shashkin, V.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Shen, D. Z.

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

Shen, J. L.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Shen, K.

Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
[Crossref]

Sheu, J.-K.

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Shi, S.-C.

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

Shih, C. F.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Shih, H.-C.

Shih, I.

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

Shih, M. H.

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Shimomoto, K.

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Shu, G. W.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Simon, J.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76(12), 1570 (2000).
[Crossref]

Sinha, N.

B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
[Crossref]

Son, T.

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

Song, H.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Sota, T.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[Crossref]

Speck, J. S.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Stampfl, C.

X. M. Duan and C. Stampfl, “Vacancies and interstitials in indium nitride: Vacancy clustering and molecular bondlike formation from first principles,” Phys. Rev. B 79(17), 174202 (2009).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Sun, K. W.

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

Sun, X.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Szkopek, T.

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

Taguchi, K.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

Thonke, K.

M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, “Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements,” Phys. Rev. B 77(24), 245207 (2008).
[Crossref]

Tian, Y. H.

W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
[Crossref]

Toledo, N. G.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Tran, N. H.

B. H. Le, S. Zhao, N. H. Tran, and Z. Mi, “Electrically injected near-infrared light emission from single InN nanowire p-i-n diode,” Appl. Phys. Lett. 105(23), 231124 (2014).
[Crossref]

Trejo, O.

N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, “Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity,” Chem. Mater. 22(16), 4769–4775 (2010).
[Crossref]

Tsai, M. A.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Tsai, S.-Y.

C.-H. Chen, K.-R. Wang, S.-Y. Tsai, H.-J. Chien, and S.-L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49(4), 04DG06 (2010).
[Crossref]

Tsai, Y.-L.

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Tu, L.-W.

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

Tu, P. M.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Tu, P.-M.

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Tun, C. J.

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Umemoto, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Usami, N.

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

Valcheva, E.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Viktorov, M.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Vodopyanov, A.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Wada, K.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[Crossref]

Walsh, S.

J. D. Lambkin, L. Considine, S. Walsh, G. M. O’Connor, C. J. McDonagh, and T. J. Glynn, “Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P,” Appl. Phys. Lett. 65(1), 73–75 (1994).
[Crossref]

Walukiewicz, W.

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

Wang, H. W.

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Wang, K.-R.

C.-H. Chen, K.-R. Wang, S.-Y. Tsai, H.-J. Chien, and S.-L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49(4), 04DG06 (2010).
[Crossref]

Wang, S. C.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Wang, T.

Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
[Crossref]

Wang, W.-L.

W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
[Crossref]

Wang, Z. L.

X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Watanabe, H.

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

Wei, P.-C.

Wei, Q. Y.

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

Weyburne, D.

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

Winden, A.

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

Wu, C.-T.

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

Wu, J.

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

Wu, K.

Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
[Crossref]

Wu, P. F.

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

Wu, S.-L.

C.-H. Chen, K.-R. Wang, S.-Y. Tsai, H.-J. Chien, and S.-L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49(4), 04DG06 (2010).
[Crossref]

Wu, Y.-H.

W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Yamamoto, A.

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779 (2003).
[Crossref]

Yao, B.

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

Yeon, S.

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

Yokogawa, T.

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

Yoshimoto, M.

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

You, K.

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

Yu, K. M.

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

Yu, P.

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

Yunin, P.

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

Zan, H. W.

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

Zan, H.-W.

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Zhang, J. Y.

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

Zhang, W.

Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
[Crossref]

Zhang, X.-M.

X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Zhang, Y.

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Zhao, D. X.

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

Zhao, S.

B. H. Le, S. Zhao, N. H. Tran, and Z. Mi, “Electrically injected near-infrared light emission from single InN nanowire p-i-n diode,” Appl. Phys. Lett. 105(23), 231124 (2014).
[Crossref]

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

S. Zhao, X. Liu, and Z. Mi, “Photoluminescence properties of Mg-doped InN nanowires,” Appl. Phys. Lett. 103(20), 203113 (2013).
[Crossref]

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

Zhu, H.

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

Adv. Mater. (1)

X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Appl. Phys. Express (2)

J. Park, H. Ryu, T. Son, and S. Yeon, “Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications,” Appl. Phys. Express 5(10), 101201 (2012).
[Crossref]

T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express 3(2), 021003 (2010).
[Crossref]

Appl. Phys. Lett. (17)

S. Zhao, X. Liu, and Z. Mi, “Photoluminescence properties of Mg-doped InN nanowires,” Appl. Phys. Lett. 103(20), 203113 (2013).
[Crossref]

B. H. Le, S. Zhao, N. H. Tran, and Z. Mi, “Electrically injected near-infrared light emission from single InN nanowire p-i-n diode,” Appl. Phys. Lett. 105(23), 231124 (2014).
[Crossref]

K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager, S. X. Li, R. E. Jones, E. E. Haller, H. Lu, and W. J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films,” Appl. Phys. Lett. 86(7), 071910 (2005).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, and H. Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetectors,” Appl. Phys. Lett. 100(12), 121109 (2012).
[Crossref]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246 (2002).
[Crossref]

G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers,” Appl. Phys. Lett. 89(13), 131913 (2006).
[Crossref]

S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, “Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 87(20), 203103 (2005).
[Crossref]

W. C. Ke, C. P. Fu, C. Y. Chen, L. Lee, C. S. Ku, W. C. Chou, W.-H. Chang, M. C. Lee, W. K. Chen, W. J. Lin, and Y. C. Cheng, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 88(19), 191913 (2006).
[Crossref]

N. Hong Tran, B. Huy Le, S. Fan, S. Zhao, Z. Mi, B. A. Schmidt, M. Savard, G. Gervais, and K. S. A. Butcher, “Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature,” Appl. Phys. Lett. 103(26), 262101 (2013).
[Crossref]

B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett. 90(24), 241101 (2007).
[Crossref]

C.-L. Hsiao, H.-C. Hsu, L.-C. Chen, C.-T. Wu, C.-W. Chen, M. Chen, L.-W. Tu, and K.-H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[Crossref]

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76(12), 1570 (2000).
[Crossref]

J. D. Lambkin, L. Considine, S. Walsh, G. M. O’Connor, C. J. McDonagh, and T. J. Glynn, “Temperature dependence of the photoluminescence intensity of ordered and disordered In0. 48Ga0. 52P,” Appl. Phys. Lett. 65(1), 73–75 (1994).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Y. Huang, K. W. Sun, A. M. Fischer, Q. Y. Wei, R. Juday, F. A. Ponce, R. Kato, and T. Yokogawa, “Effect of misfit dislocations on luminescence in m-plane InGaN quantum wells,” Appl. Phys. Lett. 98(26), 261914 (2011).
[Crossref]

Chem. Mater. (1)

N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, “Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity,” Chem. Mater. 22(16), 4769–4775 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. P. T. Nguyen, Y. L. Chang, I. Shih, and Z. Mi, “InN p-i-n Nanowire Solar Cells on Si,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1062–1069 (2011).
[Crossref]

C. H. Chiu, P. M. Tu, C. C. Lin, D. W. Lin, Z. Y. Li, K. L. Chuang, J. R. Chang, T. C. Lu, H. W. Zan, C. Y. Chen, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates,” IEEE J. Sel. Top. Quantum Electron. 17(4), 971–978 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technol. Lett. 23(18), 1304–1306 (2011).
[Crossref]

J. Appl. Phys. (7)

A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94(5), 2779 (2003).
[Crossref]

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457 (2003).
[Crossref]

J. Kamimura, K. Kishino, and A. Kikuchi, “Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth,” J. Appl. Phys. 117(8), 084314 (2015).
[Crossref]

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys. 93(11), 8918–8925 (2003).
[Crossref]

B. Roul, M. K. Rajpalke, T. N. Bhat, M. Kumar, N. Sinha, A. T. Kalghatgi, and S. B. Krupanidhi, “Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes,” J. Appl. Phys. 109(4), 044502 (2011).
[Crossref]

J. Cryst. Growth (2)

Y. K. Fu, C. H. Kuo, C. J. Tun, C. W. Kuo, W. C. Lai, G. C. Chi, C. J. Pan, M. C. Chen, H. F. Hong, and S. M. Lan, “Self-assembled InN dots grown on GaN with an In0.08Ga0.92N intermediate layer by metal organic chemical vapor deposition,” J. Cryst. Growth 310(20), 4456–4459 (2008).
[Crossref]

Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, and C. Liu, “Rapid growth and characterization of InN nanocolumns on InGaN buffer layers at a low ratio of N/In,” J. Cryst. Growth 313(1), 16–19 (2010).
[Crossref]

J. Phys. Chem. C (1)

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction,” J. Phys. Chem. C 112(51), 20546–20548 (2008).
[Crossref]

J. Solid State Sci. Technol. (1)

W. C. Chen, Y. H. Tian, Y.-H. Wu, W.-L. Wang, S.-Y. Kuo, F.-I. Lai, and L. Chang, “Influence of V/III Flow Ratio on Growth of InN on GaN by PA-MOMBE,” J. Solid State Sci. Technol. 2(7), P305–P310 (2013).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[Crossref]

Jpn. J. Appl. Phys. (7)

J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, “Thickness Dependence of Structural and Electrical Properties of Thin InN Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 52(8S), 08JD06 (2013).
[Crossref]

A. Vodopyanov, Y. Buzynin, D. Mansfeld, O. Khrykin, Y. Drozdov, P. Yunin, A. Lukyanov, M. Viktorov, S. Golubev, and V. Shashkin, “Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen Plasma Activation Supported by Gyrotron Radiation,” Jpn. J. Appl. Phys. 52(11R), 110201 (2013).
[Crossref]

T. Iwabuchi, Y. Liu, T. Kimura, Y. Zhang, K. Prasertsuk, H. Watanabe, N. Usami, R. Katayama, and T. Matsuoka, “Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN,” Jpn. J. Appl. Phys. 51(4S), 04DH02 (2012).
[Crossref]

W. Huang, M. Yoshimoto, K. Taguchi, H. Harima, and J. Saraie, “Improved Electrical Properties of InN by High-Temperature Annealing with In Situ Capped SiNx Layers,” Jpn. J. Appl. Phys. 43(1A/B), L97–L99 (2004).
[Crossref]

C.-H. Chen, K.-R. Wang, S.-Y. Tsai, H.-J. Chien, and S.-L. Wu, “Nitride-Based Metal–Semiconductor–Metal Photodetectors with InN/GaN Multiple Nucleation Layers,” Jpn. J. Appl. Phys. 49(4), 04DG06 (2010).
[Crossref]

A. Winden, M. Mikulics, A. Haab, D. Grützmacher, and H. Hardtdegen, “Spectral Sensitivity Tuning of Vertical InN Nanopyramid-Based Photodetectors,” Jpn. J. Appl. Phys. 52(8S), 08JF05 (2013).
[Crossref]

C.-C. Chen, C.-H. Chiu, P.-M. Tu, M.-Y. Kuo, M. H. Shih, J.-K. Huang, H.-C. Kuo, H.-W. Zan, and C.-Y. Chang, “Large Area of Ultraviolet GaN-Based Photonic Quasicrystal Laser,” Jpn. J. Appl. Phys. 51(4S), 04DG02 (2012).
[Crossref]

Nano Lett. (1)

S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, and Z. Mi, “p-Type InN Nanowires,” Nano Lett. 13(11), 5509–5513 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (5)

M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, “Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements,” Phys. Rev. B 77(24), 245207 (2008).
[Crossref]

J. Segura-Ruiz, N. Garro, A. Cantarero, C. Denker, J. Malindretos, and A. Rizzi, “Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation,” Phys. Rev. B 79(11), 115305 (2009).
[Crossref]

A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN,” Phys. Rev. B 71(19), 195207 (2005).
[Crossref]

X. M. Duan and C. Stampfl, “Vacancies and interstitials in indium nitride: Vacancy clustering and molecular bondlike formation from first principles,” Phys. Rev. B 79(17), 174202 (2009).
[Crossref]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Phys. Rev. B Condens. Matter (2)

M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, and J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992).
[Crossref] [PubMed]

D. W. Jenkins and J. D. Dow, “Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN,” Phys. Rev. B Condens. Matter 39(5), 3317–3329 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN,” Phys. Rev. Lett. 96(12), 125505 (2006).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

Y.-L. Tsai, C.-C. Lin, H.-V. Han, C.-K. Chang, H.-C. Chen, K.-J. Chen, W.-C. Lai, J.-K. Sheu, F.-I. Lai, P. Yu, and H.-C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Other (2)

S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, 2nd ed. (Berlin, Germany: Springer-Verlag, 2000).

E. F. Schubert, Light Emitting Diodes, 2nd ed. (Cambridge, U.K.: Cambridge Univ. Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of a ZnO/LT-GaN/InN heterojunction photodetection devices. (b) The microscopic image of a finished device under test.
Fig. 2
Fig. 2 (a) Bird-view SEM image of InN capped with LT-GaN at growth temperature of 530°C on the GaN substrate. (b) Cross-section SEM image of InN capped with LT-GaN at growth temperature of 530°C. (c) and (d) Bird-view SEM image of InN-510 and InN-550 samples. (e) Cross section-view SEM image of ZnO/LT-GaN/InN on the p-GaN:Mg substrate. The inset f and g symbols indicate the different measured area on the sample. (f), (g), and (h) are the energy dispersive spectrometer (EDS) data.
Fig. 3
Fig. 3 (a) The X-ray diffraction pattern of a LT-GaN/InN film on GaN at the different growth temperature. (b) The rocking curves of the three samples.
Fig. 4
Fig. 4 (a), (b), and (c) Photoluminescence of InN layer under cryogenic and room temperature. (d) PL peak intensity versus growth temperature of InN layers measured at cryogenic and room temperature.
Fig. 5
Fig. 5 The photoluminescence spectra at 20 K for (a) InN-510 (b) InN-530 (c) InN-550; Color lines are marked to multiple peaks calculated by Gaussian distribution method. (d) The comparative major Gaussian peak spectra of InN samples excited by a pumped laser power of 4 mW.
Fig. 6
Fig. 6 Variation of the integrated PL intensity with temperature. The solid line is the fit to the data points using Eq. (1).
Fig. 7
Fig. 7 (a) The optical transitions in the InN. (b) The temperature effect on the InN band structure and optical transition [53].
Fig. 8
Fig. 8 The temperature dependent PL spectra for three samples. All the PL spectra were normalized to theirs.
Fig. 9
Fig. 9 The calculated band diagram of a ZnO/LT-GaN/InN structure. (a) Zero bias, (b) Negative bias of 2V. The red dotted line is the Fermi level (or Quasi-Fermi level at −2V).
Fig. 10
Fig. 10 (a) The plot is the generic J-V characteristics of a photodetector under dark and simulated AM1.5G illumination. (b) The measured EQE spectra of the InN device for zero bias and reverse bias. The solid curves are the moving average of the data points.

Tables (3)

Tables Icon

Table 1 The comparison of the rocking curves of InN samples

Tables Icon

Table 2 The Gaussian Fitting Multiple Peaks of InN Samples with Different Growth Temperature

Tables Icon

Table 3 The Evaluated Activation Energy Value of InN with Different Growth Temperature

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(T)= I 0 [ 1+Aexp( E a K B T )+Bexp( E b K B T ) ] ,
Photocurrent from InN at reverse bias Total photocurrent measured at reverse bias = q 800nm 1800nm F(λ)×EQE(λ)dλ q Total F(λ)×EQE(λ)dλ ,

Metrics