Abstract

Long-range surface plasmon Y-junctions are demonstrated as sensors for the detection of bulk refractive index changes in solution and for protein binding. Using a fully-cladded Au stripe waveguide as a reference channel, common drift and noise in the system can be eliminated, relaxing the need for precise optical alignments. The performance of the structure is discussed theoretically, then bulk sensing is carried out experimentally with five solutions of different refractive indices, and protein sensing is demonstrated through physisorption of bovine serum albumin on a carboxyl-terminated Au stripe. The Y-junction biosensor demonstrated a very good ability to perform drift and noise suppression for fast and accurate biosensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biosensing using straight long-range surface plasmon waveguides

Oleksiy Krupin, Hamoudi Asiri, Chen Wang, R. Niall Tait, and Pierre Berini
Opt. Express 21(1) 698-709 (2013)

Bulk sensing using a long-range surface-plasmon triple-output Mach–Zehnder interferometer

Hui Fan and Pierre Berini
J. Opt. Soc. Am. B 33(6) 1068-1074 (2016)

Integrated multichannel Young’s interferometer sensor based on long-range surface plasmon waveguides

Wei Ru Wong and Pierre Berini
Opt. Express 27(18) 25470-25484 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1, 484–588 (2009).
  2. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
    [Crossref]
  3. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
    [Crossref]
  4. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
    [Crossref]
  5. V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuat. B 174, 94–101 (2012).
    [Crossref]
  6. A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
    [Crossref] [PubMed]
  7. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
    [Crossref]
  8. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuat. B 123(1), 10–12 (2007).
    [Crossref]
  9. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
    [Crossref] [PubMed]
  10. R. Heideman and P. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1-3), 100–127 (1999).
    [Crossref]
  11. B. Shew, Y. Cheng, and Y. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sens. Actuat. A 141(2), 299–306 (2008).
    [Crossref]
  12. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
    [Crossref] [PubMed]
  13. O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
    [Crossref] [PubMed]
  14. O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
    [Crossref] [PubMed]
  15. W. R. Wong, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Detection of dengue NS1 antigen using long-range surface plasmon waveguides,” Submitted (2015).
  16. W. R. Wong, O. Krupin, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides,” Anal. Chem. 86(3), 1735–1743 (2014).
    [Crossref] [PubMed]
  17. P. Béland, O. Krupin, and P. Berini, “Selective detection of bacteria in urine with a long-range surface plasmon waveguide biosensor,” Biomed. Opt. Express 6(8), 2908–2922 (2015).
    [Crossref] [PubMed]
  18. O. Krupin, C. Wang, and P. Berini, “Detection of leukemia markers using long-range surface plasmon waveguides functionalized with Protein G,” Lab Chip 15(21), 4156–4165 (2015).
    [Crossref] [PubMed]
  19. W. R. Wong, O. Krupin, F. R. M. Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Lightwave Technol. 33(15), 3234–3242 (2015).
    [Crossref]
  20. F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “Self-referenced spectroscopy using plasmon waveguide resonance biosensor,” Biomed. Opt. Express 5(8), 2481–2487 (2014).
    [Crossref] [PubMed]
  21. A. Glass, “CYTOP technical brochure,” (2009), https://www.agc.com .
  22. H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51(10), 1459–1467 (2012).
    [Crossref] [PubMed]
  23. A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
    [Crossref]
  24. C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis (Addison-Wesley Publishing Company, 1994).
  25. H. Asiri, “Fabrication of surface plasmon biosensors in Cytop,” in Department of Chemical and Biological Engineering (University of Ottawa, 2012).
  26. C. Chiu, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28(4), 729–735 (2010).
    [Crossref]
  27. I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
    [Crossref]
  28. S. Techane, D. R. Baer, and D. G. Castner, “Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces,” Anal. Chem. 83(17), 6704–6712 (2011).
    [Crossref] [PubMed]
  29. P. B. Agarwal, A. Kumar, R. Saravanan, A. Sharma, and C. Shekhar, “Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications,” Thin Solid Films 519(3), 1025–1027 (2010).
    [Crossref]
  30. J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).
    [Crossref]
  31. H. Arwin, “Optical properties of thin layers of bovine serum albumin, γ-globulin, and hemoglobin,” Appl. Spectrosc. 40(3), 313–318 (1986).
    [Crossref]

2015 (3)

2014 (3)

F. Bahrami, M. Maisonneuve, M. Meunier, J. S. Aitchison, and M. Mojahedi, “Self-referenced spectroscopy using plasmon waveguide resonance biosensor,” Biomed. Opt. Express 5(8), 2481–2487 (2014).
[Crossref] [PubMed]

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref] [PubMed]

W. R. Wong, O. Krupin, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides,” Anal. Chem. 86(3), 1735–1743 (2014).
[Crossref] [PubMed]

2013 (2)

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
[Crossref] [PubMed]

2012 (2)

H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51(10), 1459–1467 (2012).
[Crossref] [PubMed]

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuat. B 174, 94–101 (2012).
[Crossref]

2011 (1)

S. Techane, D. R. Baer, and D. G. Castner, “Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces,” Anal. Chem. 83(17), 6704–6712 (2011).
[Crossref] [PubMed]

2010 (2)

P. B. Agarwal, A. Kumar, R. Saravanan, A. Sharma, and C. Shekhar, “Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications,” Thin Solid Films 519(3), 1025–1027 (2010).
[Crossref]

C. Chiu, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28(4), 729–735 (2010).
[Crossref]

2009 (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1, 484–588 (2009).

2008 (3)

D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
[Crossref] [PubMed]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
[Crossref]

B. Shew, Y. Cheng, and Y. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sens. Actuat. A 141(2), 299–306 (2008).
[Crossref]

2007 (2)

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[Crossref]

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuat. B 123(1), 10–12 (2007).
[Crossref]

2006 (2)

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[Crossref]

2005 (3)

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[Crossref]

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref] [PubMed]

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

1999 (1)

R. Heideman and P. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1-3), 100–127 (1999).
[Crossref]

1986 (1)

1978 (1)

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Adikan, F. R. M.

Agarwal, P. B.

P. B. Agarwal, A. Kumar, R. Saravanan, A. Sharma, and C. Shekhar, “Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications,” Thin Solid Films 519(3), 1025–1027 (2010).
[Crossref]

Aitchison, J. S.

Arwin, H.

Asiri, H.

Baer, D. R.

S. Techane, D. R. Baer, and D. G. Castner, “Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces,” Anal. Chem. 83(17), 6704–6712 (2011).
[Crossref] [PubMed]

Bahrami, F.

Béland, P.

Benjamins, J.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Berini, P.

O. Krupin, C. Wang, and P. Berini, “Detection of leukemia markers using long-range surface plasmon waveguides functionalized with Protein G,” Lab Chip 15(21), 4156–4165 (2015).
[Crossref] [PubMed]

P. Béland, O. Krupin, and P. Berini, “Selective detection of bacteria in urine with a long-range surface plasmon waveguide biosensor,” Biomed. Opt. Express 6(8), 2908–2922 (2015).
[Crossref] [PubMed]

W. R. Wong, O. Krupin, F. R. M. Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Lightwave Technol. 33(15), 3234–3242 (2015).
[Crossref]

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref] [PubMed]

W. R. Wong, O. Krupin, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides,” Anal. Chem. 86(3), 1735–1743 (2014).
[Crossref] [PubMed]

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
[Crossref] [PubMed]

H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51(10), 1459–1467 (2012).
[Crossref] [PubMed]

C. Chiu, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28(4), 729–735 (2010).
[Crossref]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1, 484–588 (2009).

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
[Crossref]

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[Crossref]

Boltasseva, A.

Bozhevolnyi, S. I.

Breukelaar, I.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[Crossref]

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
[Crossref]

Buckley, R.

Castner, D. G.

S. Techane, D. R. Baer, and D. G. Castner, “Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces,” Anal. Chem. 83(17), 6704–6712 (2011).
[Crossref] [PubMed]

Chabot, V.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuat. B 174, 94–101 (2012).
[Crossref]

Charbonneau, R.

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[Crossref]

Charette, P. G.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuat. B 174, 94–101 (2012).
[Crossref]

Cheben, P.

Cheng, Y.

B. Shew, Y. Cheng, and Y. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sens. Actuat. A 141(2), 299–306 (2008).
[Crossref]

Chiu, C.

C. Chiu, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28(4), 729–735 (2010).
[Crossref]

Corn, R. M.

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

De Feijter, J. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Delâge, A.

Densmore, A.

Dostálek, J.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[Crossref]

Estroff, L. A.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref] [PubMed]

Fafard, S.

Fan, H.

Grandbois, M.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuat. B 174, 94–101 (2012).
[Crossref]

Heideman, R.

R. Heideman and P. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1-3), 100–127 (1999).
[Crossref]

Homola, J.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuat. B 123(1), 10–12 (2007).
[Crossref]

Janz, S.

Kasry, A.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[Crossref]

Khan, A.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Kjaer, K.

Knoll, W.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[Crossref]

Kriebel, J. K.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref] [PubMed]

Krupin, O.

O. Krupin, C. Wang, and P. Berini, “Detection of leukemia markers using long-range surface plasmon waveguides functionalized with Protein G,” Lab Chip 15(21), 4156–4165 (2015).
[Crossref] [PubMed]

W. R. Wong, O. Krupin, F. R. M. Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Lightwave Technol. 33(15), 3234–3242 (2015).
[Crossref]

P. Béland, O. Krupin, and P. Berini, “Selective detection of bacteria in urine with a long-range surface plasmon waveguide biosensor,” Biomed. Opt. Express 6(8), 2908–2922 (2015).
[Crossref] [PubMed]

W. R. Wong, O. Krupin, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides,” Anal. Chem. 86(3), 1735–1743 (2014).
[Crossref] [PubMed]

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref] [PubMed]

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
[Crossref] [PubMed]

Kumar, A.

P. B. Agarwal, A. Kumar, R. Saravanan, A. Sharma, and C. Shekhar, “Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications,” Thin Solid Films 519(3), 1025–1027 (2010).
[Crossref]

Lahoud, N.

Lambeck, P.

R. Heideman and P. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1-3), 100–127 (1999).
[Crossref]

Lapointe, J.

Larsen, M. S.

Lee, H. J.

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

Leosson, K.

Lisicka-Skrzek, E.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

C. Chiu, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28(4), 729–735 (2010).
[Crossref]

Lopinski, G.

Love, J. C.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref] [PubMed]

Mahamd Adikan, F. R.

W. R. Wong, O. Krupin, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides,” Anal. Chem. 86(3), 1735–1743 (2014).
[Crossref] [PubMed]

Maisonneuve, M.

Mattiussi, G.

McKinnon, R.

Meunier, M.

Miron, Y.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuat. B 174, 94–101 (2012).
[Crossref]

Mischki, T.

Mojahedi, M.

Nikolajsen, T.

Nuzzo, R. G.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref] [PubMed]

Post, E.

Saravanan, R.

P. B. Agarwal, A. Kumar, R. Saravanan, A. Sharma, and C. Shekhar, “Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications,” Thin Solid Films 519(3), 1025–1027 (2010).
[Crossref]

Scales, C.

Schmid, J. H.

Sekaran, S. D.

W. R. Wong, O. Krupin, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides,” Anal. Chem. 86(3), 1735–1743 (2014).
[Crossref] [PubMed]

Sharma, A.

P. B. Agarwal, A. Kumar, R. Saravanan, A. Sharma, and C. Shekhar, “Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications,” Thin Solid Films 519(3), 1025–1027 (2010).
[Crossref]

Shekhar, C.

P. B. Agarwal, A. Kumar, R. Saravanan, A. Sharma, and C. Shekhar, “Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications,” Thin Solid Films 519(3), 1025–1027 (2010).
[Crossref]

Shew, B.

B. Shew, Y. Cheng, and Y. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sens. Actuat. A 141(2), 299–306 (2008).
[Crossref]

Slavík, R.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuat. B 123(1), 10–12 (2007).
[Crossref]

Tait, R. N.

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
[Crossref] [PubMed]

C. Chiu, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28(4), 729–735 (2010).
[Crossref]

Techane, S.

S. Techane, D. R. Baer, and D. G. Castner, “Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces,” Anal. Chem. 83(17), 6704–6712 (2011).
[Crossref] [PubMed]

Tsai, Y.

B. Shew, Y. Cheng, and Y. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sens. Actuat. A 141(2), 299–306 (2008).
[Crossref]

Veer, F. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Waldron, P.

Wang, C.

O. Krupin, C. Wang, and P. Berini, “Detection of leukemia markers using long-range surface plasmon waveguides functionalized with Protein G,” Lab Chip 15(21), 4156–4165 (2015).
[Crossref] [PubMed]

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref] [PubMed]

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
[Crossref] [PubMed]

Wark, A. W.

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

Whitesides, G. M.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref] [PubMed]

Wong, W. R.

W. R. Wong, O. Krupin, F. R. M. Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Lightwave Technol. 33(15), 3234–3242 (2015).
[Crossref]

W. R. Wong, O. Krupin, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides,” Anal. Chem. 86(3), 1735–1743 (2014).
[Crossref] [PubMed]

Xu, D. X.

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1, 484–588 (2009).

Anal. Chem. (3)

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

W. R. Wong, O. Krupin, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides,” Anal. Chem. 86(3), 1735–1743 (2014).
[Crossref] [PubMed]

S. Techane, D. R. Baer, and D. G. Castner, “Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces,” Anal. Chem. 83(17), 6704–6712 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (2)

Biopolymers (1)

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Biosens. Bioelectron. (1)

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref] [PubMed]

Chem. Rev. (1)

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[Crossref] [PubMed]

J. Appl. Phys. (1)

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
[Crossref]

J. Lightwave Technol. (3)

J. Vac. Sci. Technol. B (1)

C. Chiu, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28(4), 729–735 (2010).
[Crossref]

Lab Chip (1)

O. Krupin, C. Wang, and P. Berini, “Detection of leukemia markers using long-range surface plasmon waveguides functionalized with Protein G,” Lab Chip 15(21), 4156–4165 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
[Crossref]

Opt. Express (2)

Plasmonics (1)

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[Crossref]

Sens. Actuat. A (1)

B. Shew, Y. Cheng, and Y. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sens. Actuat. A 141(2), 299–306 (2008).
[Crossref]

Sens. Actuat. B (3)

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuat. B 123(1), 10–12 (2007).
[Crossref]

R. Heideman and P. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuat. B 61(1-3), 100–127 (1999).
[Crossref]

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuat. B 174, 94–101 (2012).
[Crossref]

Thin Solid Films (1)

P. B. Agarwal, A. Kumar, R. Saravanan, A. Sharma, and C. Shekhar, “Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications,” Thin Solid Films 519(3), 1025–1027 (2010).
[Crossref]

Other (4)

A. Glass, “CYTOP technical brochure,” (2009), https://www.agc.com .

C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis (Addison-Wesley Publishing Company, 1994).

H. Asiri, “Fabrication of surface plasmon biosensors in Cytop,” in Department of Chemical and Biological Engineering (University of Ottawa, 2012).

W. R. Wong, S. D. Sekaran, F. R. Mahamd Adikan, and P. Berini, “Detection of dengue NS1 antigen using long-range surface plasmon waveguides,” Submitted (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Microscope image of a fabricated Y-junction biosensor with one arm etched to define a fluidic channel (sensing region); the reference arm remains cladded. (b) Front cross section of the sensing region. (c) Sketch of a Y-junction biosensor highlighting dimensions and loss parameters of relevance. (d) Schematic of the experimental setup.
Fig. 2
Fig. 2 Computed Y-junction sensitivities. (a) Bulk sensitivity at nc = 1.3348 (nc = nCYTOP); inset shows the field profile (Ey) of the LRSPP at t = 35 nm and nc = 1.3348. (b) Surface sensitivity ∂(Pout,F/Pout,C(0))/∂a at nc = 1.3303, 1.3348 and 1.338. (c) Partial derivatives ∂TF(0)/∂a and ∂αF(0)/∂a at nc = 1.3303, 1.3348 and 1.338. (d) Insertion loss of the Y-junction channels.
Fig. 3
Fig. 3 (a) Response of a Y-junction biosensor to PBS/Gly solutions with different refractive indices in 2 × 10−3 RIU increments at λ0 = 1310 nm. The refractive indices of the solutions injected (nc) are: (1) 1.330, (2) 1.332, (3) 1.334, (4) 1.336 and (5) 1.338. (b) Mode outputs captured using an IR camera for each solution. The mode on the left corresponds to the sensing channel and that on the right to the reference channel. (c) Power ratio of the sensing arm to the reference arm showing the referenced response of a Y-junction biosensor to bulk changes.
Fig. 4
Fig. 4 (a) Response of a Y-junction biosensor to BSA physisorption on a carboxyl-terminated Au stripe. (b) Power ratio of the sensing arm to the reference arm showing the referenced response of a Y-junction biosensor to the formation of a protein adlayer.
Fig. 5
Fig. 5 Comparison between theory and experiment for (a) bulk and (b) protein adlayer sensing.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E out,C =  E inc exp( α C L 0 ) T C ( p exp( α C L F )exp( j ϕ R ) )  
E out,F =  E inc exp( α C L 0 ) T C ( q T F T F exp( α F L F )exp( j ϕ F ) )
P out,C = E out,C E out,C *
= p 2 P inc T C exp( 2 α C L 0 )exp( 2 α C L F )
P out,F = E out,F E out,F *
= q 2 P inc T C T F 2 exp( 2 α C L 0 )exp( 2 α F L F )
I L C = 10 log 10 ( P out,C / P inc ) = 20 log 10 p+ C dB,C + L 0 MP A C + L F MP A C
I L F = 10 log 10 ( P out,F / P inc ) = 20 log 10 q+ C dB,C + 2 C dB,F + L 0 MP A C + L F MP A F  
P out,F P out,C = q 2 P inc T C T F 2 exp( 2 α C L 0 )exp( 2 α F L F ) p 2 P inc T C exp( 2 α C L 0 )exp( 2 α C L F )
= ( q p ) 2 T F 2 exp( 2 L F ( α F α C ) ) 
= ( q p ) 2 T F 2 exp( 2 L F Δα )
P out,F P out,C ( n c ,a )= T F ( n c ,a ) 2 exp( 2 L F Δα( n c ,a ) )
n c ( P out,F P out,C ( n c ) )= n c ( T F ( n c ) 2 exp( 2 L F Δα( n c ) ) )
=2 T F ( n c )exp( 2 L F Δα( n c ) )[ T F ( n c ) n c L F T F ( n c ) α F ( n c ) n c ]
a ( P out,F P out,C ( a ) )=2 T F ( a )exp( 2 L F Δα( a ) )[ T F ( a ) a L F T F ( a ) α F ( a ) a ]
T F ( n c ) n c = T F ( n c +h ) T F ( n c h ) 2h
α F ( n c ) n c = α F ( n c +h ) α F ( n c h ) 2h
T F (a) a = 3 T F (a)+4 T F (a+h) T F (a+2h) 2h
α F (a) a = 3 α F (a)+4 α F (a+h) α F (a+2h) 2h
Γ=  a( n a n c ) n/c

Metrics