Abstract

In this paper, we present a simple approach to study the coupling mechanisms between a plasmonic system consisting of bowtie nanoantennas and a photonic structure based on a Fabry-Perot interferometer. The nanoantenna array is represented by an equivalent homogeneous layer placed at the interferometer surface and yielding the effective dielectric function of the NA resonance. A phase matching model based on thin film interference is developed to describe the multi-layer interferences in the device and to analyze the fringe variations induced by the introduction of the plasmonic layer. The general model is validated by an experimental system consisting of a bowtie nanoantenna array and a porous-silicon-based interferometer. The optical response of this hybrid device exhibits both the enhancement induced by the nanoantenna resonance and the fringe pattern of the interferometer. Using the phase matching model, we demonstrate that strong coupling can occur in such a system, leading to fringe splitting. A study of the splitting strength and of the coupling behavior is given. The model study performed in this work enables to gain deeper understanding of the optical behavior of plasmonic/photonic hybrid devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics

Shabnam Ghadarghadr, Zhengwei Hao, and Hossein Mosallaei
Opt. Express 17(21) 18556-18570 (2009)

Hybrid photonic-plasmonic platform for high-throughput single-molecule studies

Mina Mossayebi, Alberto Parini, Amanda J. Wright, Mike G. Somekh, Gaetano Bellanca, and Eric C. Larkins
Opt. Mater. Express 9(6) 2511-2522 (2019)

Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system

Ling-Yan He, Tie-Jun Wang, Yong-Pan Gao, Cong Cao, and Chuan Wang
Opt. Express 23(18) 23817-23826 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Halas, “Connecting the dots: Reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. U.S.A. 106(10), 3643–3644 (2009).
    [Crossref] [PubMed]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  3. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  4. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
    [Crossref]
  5. B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
    [Crossref] [PubMed]
  6. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
    [Crossref]
  7. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
    [Crossref] [PubMed]
  8. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
    [Crossref] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  10. A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18(S3Suppl 3), A381–A394 (2010).
    [Crossref] [PubMed]
  11. T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
    [Crossref] [PubMed]
  12. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
    [Crossref] [PubMed]
  13. G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
    [Crossref]
  14. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
    [Crossref] [PubMed]
  15. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
    [Crossref]
  16. R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10(11), 4394–4398 (2010).
    [Crossref] [PubMed]
  17. C. Jamois, C. Li, E. Gerelli, R. Orobtchouk, T. Benyattou, A. Belarouci, Y. Chevolot, V. Monnier, and E. Souteyrand, “New concepts of integrated photonic biosensors based on porous silicon,” in Biosensors - Emerging Materials and Applications, P. A. Serra ed. (Intech, 2011).
  18. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
    [Crossref]
  19. H. Liu, A novel optical bio-chemical sensor based on Hybrid nanostructures of Bowtie Nanoantennas and Fabry-Perot Interferometer, Lyon Institute of Nanotechnologies INL, (PhD thesis, 2013).
  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Oxford, Pergamon, 1964).
  21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006), Chap. 12.
  22. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  23. C. Sönnichsen, Plasmons in metal nanostructures, Ludwig-Maximilians-University of Munich, (PhD thesis, 2001).
  24. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
    [Crossref]

2014 (1)

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

2012 (1)

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

2011 (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

2010 (6)

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18(S3Suppl 3), A381–A394 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10(11), 4394–4398 (2010).
[Crossref] [PubMed]

2009 (2)

N. J. Halas, “Connecting the dots: Reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. U.S.A. 106(10), 3643–3644 (2009).
[Crossref] [PubMed]

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[Crossref] [PubMed]

2008 (1)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

2007 (1)

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

2006 (2)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

2005 (3)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Aichele, T.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10(11), 4394–4398 (2010).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Barth, M.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Baumeier, B.

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[Crossref] [PubMed]

Becker, J.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Belarouci, A.

Benson, O.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Benyattou, T.

A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18(S3Suppl 3), A381–A394 (2010).
[Crossref] [PubMed]

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Braun, P. V.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Callard, S.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Chen, Z.

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

Cheng, B.

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

Chevalier, C.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

Crozier, K. B.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Feng, D.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Fischer, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Giessen, H.

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10(11), 4394–4398 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Guillermain, E.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Halas, N. J.

N. J. Halas, “Connecting the dots: Reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. U.S.A. 106(10), 3643–3644 (2009).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hentschel, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Jamois, C.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Lei, D. Y.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Leskova, T. A.

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[Crossref] [PubMed]

Letartre, X.

Löchel, B.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Lu, G.

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Lysenko, V.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Maier, S. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Maradudin, A. A.

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[Crossref] [PubMed]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Mesch, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Nazabal, V.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Nüsse, N.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Orobtchouk, R.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Perriat, P.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

Pillonnet, A.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Roux, S.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

Schietinger, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Schmidt, M. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Shen, H.

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

Sönnichsen, C.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Tillement, O.

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Viktorovitch, P.

Wondraczek, L.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Yang, G.

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

Zhang, T.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Zhou, Y.

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

Appl. Phys. Lett. (3)

G. Lu, B. Cheng, H. Shen, Y. Zhou, Z. Chen, G. Yang, O. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett. 89(22), 223904 (2006).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[Crossref]

Nano Lett. (3)

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10(11), 4394–4398 (2010).
[Crossref] [PubMed]

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

Nanotechnology (1)

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Phys. Rev. Lett. (1)

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

N. J. Halas, “Connecting the dots: Reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. U.S.A. 106(10), 3643–3644 (2009).
[Crossref] [PubMed]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Other (6)

C. Jamois, C. Li, E. Gerelli, R. Orobtchouk, T. Benyattou, A. Belarouci, Y. Chevolot, V. Monnier, and E. Souteyrand, “New concepts of integrated photonic biosensors based on porous silicon,” in Biosensors - Emerging Materials and Applications, P. A. Serra ed. (Intech, 2011).

H. Liu, A novel optical bio-chemical sensor based on Hybrid nanostructures of Bowtie Nanoantennas and Fabry-Perot Interferometer, Lyon Institute of Nanotechnologies INL, (PhD thesis, 2013).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Oxford, Pergamon, 1964).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006), Chap. 12.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

C. Sönnichsen, Plasmons in metal nanostructures, Ludwig-Maximilians-University of Munich, (PhD thesis, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of the proposed structure: the hybrid device results from the merging of the two basic blocks, i.e., NAs on semi-infinite silicon substrate with a SiO2 spacing layer, and a Fabry-Perot interferometer (FPI) made of porous silicon on Si substrate with a 80nm-thick silica layer at its surface.
Fig. 2
Fig. 2 Experimental reflectivity of the hybrid device (red solid curve), the FPI device (black dotted curve) and the NAs device (blue dashed curve). The numbers indicate the order of the fringes.
Fig. 3
Fig. 3 (a) Schematic view of the hybrid device. (b) This structure can be viewed as a 3-layer 1D system where the NA array is assumed to be equivalent to a homogeneous layer with same effective dielectric function as the NA resonance.
Fig. 4
Fig. 4 (a) Effective refractive index of NAs: real part (red line) and imaginary part (purple dashed line); (b) Variations of Δφtot-NA deduced from the dielectric function of the NA equivalent layer presented in (a).
Fig. 5
Fig. 5 Calculated reflectivity (TMM) of the hybrid device (red curve), the interferometer alone (black dotted curve) and the NAs alone (blue dashed curve).
Fig. 6
Fig. 6 Reflectivity of the hybrid device (red solid curve), the FPI system (black dot curve) and the NAs system (blue dashed curve): (a) nPSi = 1.6 and dPSi = 5µm; (b) nPSi = 1.4 and dPSi = 5µm.
Fig. 7
Fig. 7 Electric field distribution along the depth of interferometer with 5 μm-thick PSi and 80 nm-thick SiO2 at NA resonance: left: nPSi = 1.4; right: nPSi = 1.6. The insets show the field distribution in the vicinity of the interferometer surface, which lies at the position depth = 0 nm.
Fig. 8
Fig. 8 Variations of the mode positions with the optical path of PSi for all 3 devices, deduced from TMM simulations. Red dots: fringe minima of hybrid device – the hollow dots represent the less pronounced minima positions in the case of weak splitting; black dotted lines: fringe minima of interferometer; blue dashed lines: NAs resonance.

Tables (1)

Tables Icon

Table 1 Comparison between the fringe minima positions for the FPI and the hybrid device, deduced from the PMM model for TMM simulations and experimental results

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ φ tot1 =Δ φ prop1 +Δ φ L1/Air +Δ φ L1/sub =2mπ,forR= R min .
Δ φ prop1 = 4π n 1 d 1 λ L1min .
4π n 1 d 1 λ L1min =( 2m1 )π,forR= R min .
Δ φ tot2 =Δ φ prop2 +Δ φ L2/Air +Δ φ L1/L2 +Δ φ L1/sub =2mπ,forR= R min .
Δ φ prop2 = 4π( n 1 d 1 + n 2 d 2 ) λ L1+L2min .
4π( n 1 d 1 + n 2 d 2 ) λ L1+L2min =( 2m1 )π,forR= R min .
4π( n 1 d 1 + n 2 d 2 ) λ L1+L2+L3min +Δ φ totL3 =( 2m1 )π,forR= R min .
4π( n PSi d PSi + n Si O 2 d Si O 2 ) λ Hybridmin +Δ φ totNA = 4π( n PSi d PSi + n Si O 2 d Si O 2 ) λ FPImin .
ε( ω )= ε + ω ˜ p 2 ω NA 2 ω 2 iγω .

Metrics