Abstract

Two integrated Young’s interferometer (YI) sensors based on long-range surface plasmon polariton (LRSPP) waveguides are presented. The first sensor is single-channel and based on a Y-junction splitter, and the other is multi-channel and based on a corporate feed structure. The multichannel YI enables simultaneous and independent phase-based monitoring of refractive index changes in multiple channels. The diverging output beams from the waveguides are overlapped in the far field to form interference patterns which are then post-processed using the fast Fourier transform (FFT) algorithm to extract phase values. The sensing capability of these YIs was demonstrated through sequential injection of solutions with increasing refractive index into the sensing channels. A detection limit of ∼ 1 × 10−6 RIU was obtained for both LRSPP based YIs, a significant improvement over measurements from similar structures using attenuation-based sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Biosensing using straight long-range surface plasmon waveguides

Oleksiy Krupin, Hamoudi Asiri, Chen Wang, R. Niall Tait, and Pierre Berini
Opt. Express 21(1) 698-709 (2013)

Long-range surface plasmon-polariton waveguide sensors with a Bragg grating in the asymmetric double-electrode structure

Yang Hyun Joo, Seok Ho Song, and Robert Magnusson
Opt. Express 17(13) 10606-10611 (2009)

Long-range surface plasmon Y-junctions for referenced biosensing

Wei Ru Wong, Faisal Rafiq Mahamd Adikan, and Pierre Berini
Opt. Express 23(24) 31098-31108 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
    [Crossref] [PubMed]
  2. B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
    [Crossref]
  3. W.-M. Zhao and Q. Wang, “A high sensitivity refractive index sensor based on three-level gradient structure S-tapered fiber mode-mode interferometer,” Measurement 139, 49–60 (2019).
    [Crossref]
  4. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15, 1491–1496 (2007).
    [Crossref] [PubMed]
  5. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Light. Technol. 19, 1495 (2001).
    [Crossref]
  6. A. Brandenburg and R. Henninger, “Integrated optical Young interferometer,” Appl. Opt. 33, 5941–5947 (1994).
    [Crossref] [PubMed]
  7. R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B: Chem. 10, 209–217 (1993).
    [Crossref]
  8. A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B: Chem. 83, 1–7 (2002).
    [Crossref]
  9. H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards electrotuneable nanoplasmonic Fabry-Perot interferometer,” Sci. Rep. 8, 565 (2018).
    [Crossref] [PubMed]
  10. C. Tyszkiewicz and T. Pustelny, “Differential interferometry in planar waveguide structures with ferronematic layer,” Opt. Appl. 34, 507–514 (2004).
  11. P. D. Coffey, M. J. Swann, T. A. Waigh, F. Schedin, and J. R. Lu, “Multiple path length dual polarization interferometry,” Opt. Express 17, 10959–10969 (2009).
    [Crossref] [PubMed]
  12. D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
    [Crossref] [PubMed]
  13. A. Brandenburg, R. Krauter, C. Künzel, M. Stefan, and H. Schulte, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39, 6396–6405 (2000).
    [Crossref]
  14. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
    [Crossref]
  15. H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express 20, 20934–20950 (2012).
    [Crossref] [PubMed]
  16. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42, 5649–5660 (2003).
    [Crossref] [PubMed]
  17. A. Wikerstål, “Multi-channel solutions for optical labelfree detection schemes based on the interferometric and grating coupler principle,” Phd thesis, Albert Ludwig University of Freiburg (2001).
  18. C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321–335 (1989).
    [Crossref]
  19. M. Tencer, O. Krupin, B. Tezel, and P. Berini, “Electrochemistry of au-sam-protein stacks,” J. Electrochem. Soc. 160, H22–H27 (2013).
    [Crossref]
  20. S. A. Maier, Plasmonics: Fundamentals and applications (Springer Science & Business Media, 2007).
  21. L. Yang, J. Wang, L.-z. Yang, Z.-D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
    [Crossref] [PubMed]
  22. H. T. Chorsi, Y. Lee, A. Alù, and J. X. J. Zhang, “Tunable plasmonic substrates with ultrahigh Q-factor resonances,” Sci. Rep. 7, 15985 (2017).
    [Crossref] [PubMed]
  23. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
    [Crossref]
  24. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [Crossref]
  25. N. R. Fong, P. Berini, and R. N. Tait, “Characterization of grating-coupled long range surface plasmon polariton membrane waveguides,” Opt. Express 23, 17421–17430 (2015).
    [Crossref] [PubMed]
  26. P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B: Chem. 54, 43–50 (1999).
    [Crossref]
  27. Q. Gan, Y. Gao, and F. J. Bartoli, “Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing,” Opt. Express 17, 20747–20755 (2009).
    [Crossref] [PubMed]
  28. Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30, 1488–1490 (2005).
    [Crossref] [PubMed]
  29. A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103, 111108 (2013).
    [Crossref]
  30. H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon dual-output Mach-Zehnder interferometer,” J. Light. Technol. 34, 2631–2638 (2016).
    [Crossref]
  31. H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon triple-output Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 33, 1068–1074 (2016).
    [Crossref]
  32. W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Long-range surface plasmon Y-junctions for referenced biosensing,” Opt. Express 23, 31098–31108 (2015).
    [Crossref] [PubMed]
  33. W. R. Wong, H. Fan, F. R. M. Adikan, and P. Berini, “Multichannel long-range surface plasmon waveguides for parallel biosensing,” J. Light. Technol. 36, 5536–5546 (2018).
    [Crossref]
  34. W. R. Wong, O. Krupin, F. R. Mahamd Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Light. Technol. 33, 3234–3242 (2015).
    [Crossref]
  35. H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51, 1459–1467 (2012).
    [Crossref] [PubMed]
  36. S. Aikio, M. Hiltunen, and J. Hiltunen, “Compensation of drift by using a multichannel integrated Young interferometer,” Appl. Opt. 54, 4771–4780 (2015).
    [Crossref] [PubMed]
  37. J. S. Kanger, V. Subramaniam, P. H. J. Nederkoorn, and A. Ymeti, “A fast and sensitive integrated Young interferometer biosensor,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 265–295.
    [Crossref]
  38. MathWorks, MATLAB Function Reference (R2018b) (2018).
  39. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson, 2017).
  40. D. Donnelle and B. Rust, “The fast Fourier transform for experimentalists. part I. concepts,” Comput. Sci. Eng. 7, 80–88 (2005).
    [Crossref]
  41. Sofradir EC Inc., MicronViewer 7290A Frequently Asked Questions (2013).

2019 (2)

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

W.-M. Zhao and Q. Wang, “A high sensitivity refractive index sensor based on three-level gradient structure S-tapered fiber mode-mode interferometer,” Measurement 139, 49–60 (2019).
[Crossref]

2018 (3)

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards electrotuneable nanoplasmonic Fabry-Perot interferometer,” Sci. Rep. 8, 565 (2018).
[Crossref] [PubMed]

L. Yang, J. Wang, L.-z. Yang, Z.-D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref] [PubMed]

W. R. Wong, H. Fan, F. R. M. Adikan, and P. Berini, “Multichannel long-range surface plasmon waveguides for parallel biosensing,” J. Light. Technol. 36, 5536–5546 (2018).
[Crossref]

2017 (1)

H. T. Chorsi, Y. Lee, A. Alù, and J. X. J. Zhang, “Tunable plasmonic substrates with ultrahigh Q-factor resonances,” Sci. Rep. 7, 15985 (2017).
[Crossref] [PubMed]

2016 (2)

H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon dual-output Mach-Zehnder interferometer,” J. Light. Technol. 34, 2631–2638 (2016).
[Crossref]

H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon triple-output Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 33, 1068–1074 (2016).
[Crossref]

2015 (4)

2014 (1)

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

2013 (2)

M. Tencer, O. Krupin, B. Tezel, and P. Berini, “Electrochemistry of au-sam-protein stacks,” J. Electrochem. Soc. 160, H22–H27 (2013).
[Crossref]

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103, 111108 (2013).
[Crossref]

2012 (3)

H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51, 1459–1467 (2012).
[Crossref] [PubMed]

H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express 20, 20934–20950 (2012).
[Crossref] [PubMed]

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

2009 (3)

2007 (2)

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15, 1491–1496 (2007).
[Crossref] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

2006 (1)

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
[Crossref]

2005 (2)

D. Donnelle and B. Rust, “The fast Fourier transform for experimentalists. part I. concepts,” Comput. Sci. Eng. 7, 80–88 (2005).
[Crossref]

Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30, 1488–1490 (2005).
[Crossref] [PubMed]

2004 (1)

C. Tyszkiewicz and T. Pustelny, “Differential interferometry in planar waveguide structures with ferronematic layer,” Opt. Appl. 34, 507–514 (2004).

2003 (1)

2002 (1)

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B: Chem. 83, 1–7 (2002).
[Crossref]

2001 (1)

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Light. Technol. 19, 1495 (2001).
[Crossref]

2000 (1)

1999 (1)

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B: Chem. 54, 43–50 (1999).
[Crossref]

1994 (1)

1993 (1)

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B: Chem. 10, 209–217 (1993).
[Crossref]

1989 (1)

C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321–335 (1989).
[Crossref]

Adikan, F. R. M.

W. R. Wong, H. Fan, F. R. M. Adikan, and P. Berini, “Multichannel long-range surface plasmon waveguides for parallel biosensing,” J. Light. Technol. 36, 5536–5546 (2018).
[Crossref]

Aikio, S.

Alù, A.

H. T. Chorsi, Y. Lee, A. Alù, and J. X. J. Zhang, “Tunable plasmonic substrates with ultrahigh Q-factor resonances,” Sci. Rep. 7, 15985 (2017).
[Crossref] [PubMed]

Badenes, G.

Bain, C. D.

C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321–335 (1989).
[Crossref]

Bartoli, F. J.

Beloglazov, A. A.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B: Chem. 54, 43–50 (1999).
[Crossref]

Berini, P.

W. R. Wong, H. Fan, F. R. M. Adikan, and P. Berini, “Multichannel long-range surface plasmon waveguides for parallel biosensing,” J. Light. Technol. 36, 5536–5546 (2018).
[Crossref]

H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon dual-output Mach-Zehnder interferometer,” J. Light. Technol. 34, 2631–2638 (2016).
[Crossref]

H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon triple-output Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 33, 1068–1074 (2016).
[Crossref]

W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Long-range surface plasmon Y-junctions for referenced biosensing,” Opt. Express 23, 31098–31108 (2015).
[Crossref] [PubMed]

N. R. Fong, P. Berini, and R. N. Tait, “Characterization of grating-coupled long range surface plasmon polariton membrane waveguides,” Opt. Express 23, 17421–17430 (2015).
[Crossref] [PubMed]

W. R. Wong, O. Krupin, F. R. Mahamd Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Light. Technol. 33, 3234–3242 (2015).
[Crossref]

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103, 111108 (2013).
[Crossref]

M. Tencer, O. Krupin, B. Tezel, and P. Berini, “Electrochemistry of au-sam-protein stacks,” J. Electrochem. Soc. 160, H22–H27 (2013).
[Crossref]

H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51, 1459–1467 (2012).
[Crossref] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
[Crossref]

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

A. Brandenburg, R. Krauter, C. Künzel, M. Stefan, and H. Schulte, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39, 6396–6405 (2000).
[Crossref]

A. Brandenburg and R. Henninger, “Integrated optical Young interferometer,” Appl. Opt. 33, 5941–5947 (1994).
[Crossref] [PubMed]

Breukelaar, I.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
[Crossref]

Buckley, R.

Charbonneau, R.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
[Crossref]

Chen, S.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Chen, S. J.

Chen, Z.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Chorsi, H. T.

H. T. Chorsi, Y. Lee, A. Alù, and J. X. J. Zhang, “Tunable plasmonic substrates with ultrahigh Q-factor resonances,” Sci. Rep. 7, 15985 (2017).
[Crossref] [PubMed]

Coffey, P. D.

Dante, S.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Domínguez, C.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Donnelle, D.

D. Donnelle and B. Rust, “The fast Fourier transform for experimentalists. part I. concepts,” Comput. Sci. Eng. 7, 80–88 (2005).
[Crossref]

Duval, D.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Edel, J. B.

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards electrotuneable nanoplasmonic Fabry-Perot interferometer,” Sci. Rep. 8, 565 (2018).
[Crossref] [PubMed]

Ehrentreich-Förster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Evall, J.

C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321–335 (1989).
[Crossref]

Fafard, S.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
[Crossref]

Fan, H.

W. R. Wong, H. Fan, F. R. M. Adikan, and P. Berini, “Multichannel long-range surface plasmon waveguides for parallel biosensing,” J. Light. Technol. 36, 5536–5546 (2018).
[Crossref]

H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon dual-output Mach-Zehnder interferometer,” J. Light. Technol. 34, 2631–2638 (2016).
[Crossref]

H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon triple-output Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 33, 1068–1074 (2016).
[Crossref]

H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51, 1459–1467 (2012).
[Crossref] [PubMed]

Feng, Y.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Fernández, L. J.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Fong, N. R.

Gan, Q.

Gao, S.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Gao, Y.

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson, 2017).

González-Guerrero, A. B.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Greve, J.

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42, 5649–5660 (2003).
[Crossref] [PubMed]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B: Chem. 83, 1–7 (2002).
[Crossref]

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B: Chem. 10, 209–217 (1993).
[Crossref]

Heideman, R. G.

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42, 5649–5660 (2003).
[Crossref] [PubMed]

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B: Chem. 10, 209–217 (1993).
[Crossref]

Henninger, R.

Hiltunen, J.

Hiltunen, M.

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Hu, Z.-D.

L. Yang, J. Wang, L.-z. Yang, Z.-D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref] [PubMed]

Huang, B.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Huang, X.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Kanger, J. S.

H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express 20, 20934–20950 (2012).
[Crossref] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42, 5649–5660 (2003).
[Crossref] [PubMed]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B: Chem. 83, 1–7 (2002).
[Crossref]

J. S. Kanger, V. Subramaniam, P. H. J. Nederkoorn, and A. Ymeti, “A fast and sensitive integrated Young interferometer biosensor,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 265–295.
[Crossref]

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Khan, A.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103, 111108 (2013).
[Crossref]

Kochergin, V. E.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B: Chem. 54, 43–50 (1999).
[Crossref]

Kooyman, R. P. H.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B: Chem. 10, 209–217 (1993).
[Crossref]

Kornyshev, A. A.

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards electrotuneable nanoplasmonic Fabry-Perot interferometer,” Sci. Rep. 8, 565 (2018).
[Crossref] [PubMed]

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Krauter, R.

Krupin, O.

W. R. Wong, O. Krupin, F. R. Mahamd Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Light. Technol. 33, 3234–3242 (2015).
[Crossref]

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103, 111108 (2013).
[Crossref]

M. Tencer, O. Krupin, B. Tezel, and P. Berini, “Electrochemistry of au-sam-protein stacks,” J. Electrochem. Soc. 160, H22–H27 (2013).
[Crossref]

Ksenevich, T. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B: Chem. 54, 43–50 (1999).
[Crossref]

Künzel, C.

Lahoud, N.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
[Crossref]

Lambeck, P. V.

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42, 5649–5660 (2003).
[Crossref] [PubMed]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B: Chem. 83, 1–7 (2002).
[Crossref]

Lechuga, L. M.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Lee, Y.

H. T. Chorsi, Y. Lee, A. Alù, and J. X. J. Zhang, “Tunable plasmonic substrates with ultrahigh Q-factor resonances,” Sci. Rep. 7, 15985 (2017).
[Crossref] [PubMed]

Li, Z.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Lisicka-Skrzek, E.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103, 111108 (2013).
[Crossref]

Liu, W.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Lu, J. R.

Mahamd Adikan, F. R.

W. R. Wong, O. Krupin, F. R. Mahamd Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Light. Technol. 33, 3234–3242 (2015).
[Crossref]

W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Long-range surface plasmon Y-junctions for referenced biosensing,” Opt. Express 23, 31098–31108 (2015).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and applications (Springer Science & Business Media, 2007).

Mattiussi, G.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
[Crossref]

May, R. G.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Light. Technol. 19, 1495 (2001).
[Crossref]

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Minkovich, V. P.

Monge, R.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Mulder, H. K. P.

Nederkoorn, P. H. J.

J. S. Kanger, V. Subramaniam, P. H. J. Nederkoorn, and A. Ymeti, “A fast and sensitive integrated Young interferometer biosensor,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 265–295.
[Crossref]

Nikitin, P. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B: Chem. 54, 43–50 (1999).
[Crossref]

Nuzzo, R. G.

C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321–335 (1989).
[Crossref]

Osmond, J.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Pruneri, V.

Pustelny, T.

C. Tyszkiewicz and T. Pustelny, “Differential interferometry in planar waveguide structures with ferronematic layer,” Opt. Appl. 34, 507–514 (2004).

Rust, B.

D. Donnelle and B. Rust, “The fast Fourier transform for experimentalists. part I. concepts,” Comput. Sci. Eng. 7, 80–88 (2005).
[Crossref]

Scales, C.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
[Crossref]

Schedin, F.

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Schulte, H.

Sikdar, D.

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards electrotuneable nanoplasmonic Fabry-Perot interferometer,” Sci. Rep. 8, 565 (2018).
[Crossref] [PubMed]

Stamm, C.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Stefan, M.

Su, Y. D.

Subramaniam, V.

H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express 20, 20934–20950 (2012).
[Crossref] [PubMed]

J. S. Kanger, V. Subramaniam, P. H. J. Nederkoorn, and A. Ymeti, “A fast and sensitive integrated Young interferometer biosensor,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 265–295.
[Crossref]

Swann, M. J.

Tait, R. N.

Tao, Y. T.

C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321–335 (1989).
[Crossref]

Tencer, M.

M. Tencer, O. Krupin, B. Tezel, and P. Berini, “Electrochemistry of au-sam-protein stacks,” J. Electrochem. Soc. 160, H22–H27 (2013).
[Crossref]

Tezel, B.

M. Tencer, O. Krupin, B. Tezel, and P. Berini, “Electrochemistry of au-sam-protein stacks,” J. Electrochem. Soc. 160, H22–H27 (2013).
[Crossref]

Troughton, E. B.

C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321–335 (1989).
[Crossref]

Tyszkiewicz, C.

C. Tyszkiewicz and T. Pustelny, “Differential interferometry in planar waveguide structures with ferronematic layer,” Opt. Appl. 34, 507–514 (2004).

Valeiko, M. V.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B: Chem. 54, 43–50 (1999).
[Crossref]

Villatoro, J.

Waigh, T. A.

Wang, A.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Light. Technol. 19, 1495 (2001).
[Crossref]

Wang, J.

L. Yang, J. Wang, L.-z. Yang, Z.-D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref] [PubMed]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Light. Technol. 19, 1495 (2001).
[Crossref]

Wang, Q.

W.-M. Zhao and Q. Wang, “A high sensitivity refractive index sensor based on three-level gradient structure S-tapered fiber mode-mode interferometer,” Measurement 139, 49–60 (2019).
[Crossref]

Wang, Z.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Light. Technol. 19, 1495 (2001).
[Crossref]

Weir, H.

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards electrotuneable nanoplasmonic Fabry-Perot interferometer,” Sci. Rep. 8, 565 (2018).
[Crossref] [PubMed]

Whitesides, G. M.

C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321–335 (1989).
[Crossref]

Wijn, R.

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42, 5649–5660 (2003).
[Crossref] [PubMed]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B: Chem. 83, 1–7 (2002).
[Crossref]

Wikerstål, A.

A. Wikerstål, “Multi-channel solutions for optical labelfree detection schemes based on the interferometric and grating coupler principle,” Phd thesis, Albert Ludwig University of Freiburg (2001).

Wong, W. R.

W. R. Wong, H. Fan, F. R. M. Adikan, and P. Berini, “Multichannel long-range surface plasmon waveguides for parallel biosensing,” J. Light. Technol. 36, 5536–5546 (2018).
[Crossref]

W. R. Wong, O. Krupin, F. R. Mahamd Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Light. Technol. 33, 3234–3242 (2015).
[Crossref]

W. R. Wong, F. R. Mahamd Adikan, and P. Berini, “Long-range surface plasmon Y-junctions for referenced biosensing,” Opt. Express 23, 31098–31108 (2015).
[Crossref] [PubMed]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson, 2017).

Wu, X.

L. Yang, J. Wang, L.-z. Yang, Z.-D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref] [PubMed]

Xiao, H.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Light. Technol. 19, 1495 (2001).
[Crossref]

Xiong, S.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Yang, L.

L. Yang, J. Wang, L.-z. Yang, Z.-D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref] [PubMed]

Yang, L.-z.

L. Yang, J. Wang, L.-z. Yang, Z.-D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref] [PubMed]

Yeh, T. L.

Ymeti, A.

H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express 20, 20934–20950 (2012).
[Crossref] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42, 5649–5660 (2003).
[Crossref] [PubMed]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B: Chem. 83, 1–7 (2002).
[Crossref]

J. S. Kanger, V. Subramaniam, P. H. J. Nederkoorn, and A. Ymeti, “A fast and sensitive integrated Young interferometer biosensor,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 265–295.
[Crossref]

Zhang, H.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Zhang, J. X. J.

H. T. Chorsi, Y. Lee, A. Alù, and J. X. J. Zhang, “Tunable plasmonic substrates with ultrahigh Q-factor resonances,” Sci. Rep. 7, 15985 (2017).
[Crossref] [PubMed]

Zhao, W.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Light. Technol. 19, 1495 (2001).
[Crossref]

Zhao, W.-M.

W.-M. Zhao and Q. Wang, “A high sensitivity refractive index sensor based on three-level gradient structure S-tapered fiber mode-mode interferometer,” Measurement 139, 49–60 (2019).
[Crossref]

Zheng, G.

L. Yang, J. Wang, L.-z. Yang, Z.-D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref] [PubMed]

Zhu, S.

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

Zinoviev, K. E.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Opt. (5)

Appl. Phys. Lett. (1)

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103, 111108 (2013).
[Crossref]

Biosens. Bioelectron. (2)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Comput. Sci. Eng. (1)

D. Donnelle and B. Rust, “The fast Fourier transform for experimentalists. part I. concepts,” Comput. Sci. Eng. 7, 80–88 (2005).
[Crossref]

IEEE Sens. J. (1)

B. Huang, S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, “In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement,” IEEE Sens. J. 19, 5632–5638 (2019).
[Crossref]

J. Am. Chem. Soc. (1)

C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321–335 (1989).
[Crossref]

J. Electrochem. Soc. (1)

M. Tencer, O. Krupin, B. Tezel, and P. Berini, “Electrochemistry of au-sam-protein stacks,” J. Electrochem. Soc. 160, H22–H27 (2013).
[Crossref]

J. Light. Technol. (5)

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Light. Technol. 19, 1495 (2001).
[Crossref]

H. Fan and P. Berini, “Bulk sensing using a long-range surface-plasmon dual-output Mach-Zehnder interferometer,” J. Light. Technol. 34, 2631–2638 (2016).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477–494 (2006).
[Crossref]

W. R. Wong, H. Fan, F. R. M. Adikan, and P. Berini, “Multichannel long-range surface plasmon waveguides for parallel biosensing,” J. Light. Technol. 36, 5536–5546 (2018).
[Crossref]

W. R. Wong, O. Krupin, F. R. Mahamd Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” J. Light. Technol. 33, 3234–3242 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12, 1987–1994 (2012).
[Crossref] [PubMed]

Measurement (1)

W.-M. Zhao and Q. Wang, “A high sensitivity refractive index sensor based on three-level gradient structure S-tapered fiber mode-mode interferometer,” Measurement 139, 49–60 (2019).
[Crossref]

Opt. Appl. (1)

C. Tyszkiewicz and T. Pustelny, “Differential interferometry in planar waveguide structures with ferronematic layer,” Opt. Appl. 34, 507–514 (2004).

Opt. Express (6)

Opt. Lett. (1)

Sci. Rep. (3)

L. Yang, J. Wang, L.-z. Yang, Z.-D. Hu, X. Wu, and G. Zheng, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8, 2560 (2018).
[Crossref] [PubMed]

H. T. Chorsi, Y. Lee, A. Alù, and J. X. J. Zhang, “Tunable plasmonic substrates with ultrahigh Q-factor resonances,” Sci. Rep. 7, 15985 (2017).
[Crossref] [PubMed]

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards electrotuneable nanoplasmonic Fabry-Perot interferometer,” Sci. Rep. 8, 565 (2018).
[Crossref] [PubMed]

Sens. Actuators B: Chem. (3)

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B: Chem. 10, 209–217 (1993).
[Crossref]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B: Chem. 83, 1–7 (2002).
[Crossref]

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B: Chem. 54, 43–50 (1999).
[Crossref]

Other (6)

J. S. Kanger, V. Subramaniam, P. H. J. Nederkoorn, and A. Ymeti, “A fast and sensitive integrated Young interferometer biosensor,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer, 2009), pp. 265–295.
[Crossref]

MathWorks, MATLAB Function Reference (R2018b) (2018).

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson, 2017).

S. A. Maier, Plasmonics: Fundamentals and applications (Springer Science & Business Media, 2007).

A. Wikerstål, “Multi-channel solutions for optical labelfree detection schemes based on the interferometric and grating coupler principle,” Phd thesis, Albert Ludwig University of Freiburg (2001).

Sofradir EC Inc., MicronViewer 7290A Frequently Asked Questions (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Schematic of a Y-junction Young’s interferometer and its collimated outputs in the far field. (b) Microscope image of our Y-junction structure.
Fig. 2
Fig. 2 (a) Schematic of a corporate-feed Young’s interferometer and its collimated outputs in the far field. (b) Microscope image of our corporate-feed multichannel structure.
Fig. 3
Fig. 3 Schematic illustration of the experimental setup. (a) Setup to form interference on the front side of the microscope objective by overlapping output divergent beams. (b) Setup to form interference at the detector of the camera by overlapping magnified output beams through a convex lens.
Fig. 4
Fig. 4 Calculated intensity distribution of the interference pattern formed by using (a) Y-junction and (b) corporate-feed multichannel YIs, assuming equal power distribution in the output waveguides and no phase differences among them. The irradiance distribution is modulated by a Gaussian intensity profile (dashed curves).
Fig. 5
Fig. 5 Calculated and measured amplitude of the Fourier-transformed interference patterns of the (a) Y-junction and (b) corporate-feed multichannel YIs. Channel distances di j corresponding to the peaks in the amplitude plot are also labelled.
Fig. 6
Fig. 6 (a) Measured relative phase difference due to the injection of solutions in steps of Δnc = 2 × 10−3. (b) Unwrapped phase difference due to the injection of solutions in steps of Δnc = 2 × 10−3.
Fig. 7
Fig. 7 Measured relative phase difference for a Y-junction Young’s interferometer due to the injection of solutions in steps of Δnc = 2 × 10−4. The bulk sensing responses were obtained using (a) setup 1 and (b) setup 2.
Fig. 8
Fig. 8 Measured relative phase difference as a function of the refractive index of solutions injected into our Y-junction YI.
Fig. 9
Fig. 9 (a) Far field mode outputs from the corporate-feed Young’s interferometer. (b) The output beams approach each other when a convex lens is inserted and the camera is placed before the focal point of convex lens. (c) The output beams overlap with each other when a convex lens is inserted and the camera is placed at the focal point of convex lens. (d) Formation of the interference pattern when the camera is placed after the focal point of the convex lens.
Fig. 10
Fig. 10 Measured relative phase difference for a corporate-feed Young’s interferometer due to the injection of solutions in steps of Δnc = 2 × 10−3. The bulk sensing responses are for waveguide pairs (a) 1–3, (b) 2–3, (c) 3–5, (d) 1–4, (e) 2–4, (f) 4–5, (g) 3–6, (h) 1–5 and 2–6, (i) 1–6, (j) 4–6, (k) 1–2 and 5–6, (l) 2–5, and (m) 3–4. The inset shows in enlarged scale the relative phase difference between waveguide pair 3–4. (n) Schematic of corporate-feed Young’s interferometer and the numbering of its output waveguides.
Fig. 11
Fig. 11 Measured phase difference as a function of the refractive index of the injected solutions, in steps of (a) Δnc = 2 × 10−3 and (b) Δnc = 2 × 10−4 for a corporate-feed Young’s interferometer.
Fig. 12
Fig. 12 Measured relative phase difference for a corporate-feed Young’s interferometer due to the injection of solutions in steps of Δnc = 2 × 10−4. The bulk sensing responses are for waveguide pairs (a) 1–3, (b) 2–3, (c) 3–5, (d) 1–4, (e) 2–4, (f) 4–5, (g) 3–6, (h) 1–5 and 2–6, (i) 1–6, (j) 4–6, (k) 1–2 and 5–6, (l) 2–5, and (m) 3–4. (n) Schematic of a corporate-feed Young’s interferometer and the numbering of its output waveguides. Legend I: nc = 1.3370; II: nc = 1.3372; III: nc = 1.3374; IV: nc = 1.3376; V: nc = 1.3378; VI: nc = 1.3380; VII: nc = 1.3382; VIII: nc = 1.3384.

Tables (1)

Tables Icon

Table 1 Summary of Measured Bulk Sensitivity and Detection Limit for Y-junction and Corporate-feed Young’s Interferometers.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I 0 ( x ) = i = 1 N I i + 2 i , j = 1 ; i < j N I i I j cos ( Δ Φ i j ( x ) + Δ φ i j )
I ( x ) = a ( x ) I 0 ( x )
Δ Φ i j ( x ) = 2 π k i j x = 2 π λ 0 d i j L x
Δ φ i j = 2 π λ 0 l n eff n c Δ n i j
{ I ( x ) } = i = 1 N I i δ ( ω ) + i , j = 1 ; i < j N I i I j [ e j Δ φ i j δ ( ω k i j ) + e j Δ φ i j δ ( ω + k i j ) ]
[ u , v ] = 1 N M x = 0 N 1 y = 0 M 1 f [ x , y ] exp ( j 2 π ( x u N + y v M ) )
[ u , v ] = 1 M y = 0 M 1 [ 1 N x = 0 N 1 f [ x , y ] exp ( j 2 π x u N ) ] exp ( j 2 π y v M )
Δ φ 12 r = 2 π λ 0 l n eff n c Δ n 12 + φ 0 = 2 π λ 0 l n eff n c ( n c 1.3348 ) + φ 0
Δ φ 12 = 2 π λ 0 l n eff n c Δ n 12 = 2 π λ 0 l n eff n c ( n c 1.3348 )
I 0 ( x ) = i = 1 N I i + 2 i , j = 1 ; i < j N I i I j cos ( Δ Φ i j ( x ) + Δ φ i j )
I 0 ( x ) = NI m + 2 i , j = 1 ; i < j N I m cos ( Δ Φ i j ( x ) + Δ φ i j )
{ I 0 ( x ) } = { NI m + 2 i , j = 1 ; i < j N I m cos ( Δ Φ i j ( x ) + Δ φ i j ) }
= { NI m } + { 2 i , j = 1 ; i < j N I m cos Δ Φ i j ( x ) cos Δ φ i j sin Δ Φ i j ( x ) sin Δ φ i j }
= { NI m } + { 2 i , j = 1 ; i < j N I m cos ( 2 π k i j x ) cos Δ φ i j sin ( 2 π k i j x ) sin Δ φ i j }
= NI m δ ( ω ) + 2 i , j = 1 ; i < j N I m [ cos Δ φ i j ( 1 2 ( δ ( ω k i j ) + δ ( ω + k i j ) ) ) sin Δ φ i j ( 1 j 2 ( δ ( ω k i j ) + δ ( ω + k i j ) ) ) ]
= NI m δ ( ω ) + 2 i , j = 1 ; i < j N I m [ ( e j Δ φ i j + e j Δ φ i j 2 ) ( 1 2 ( δ ( ω k i j ) + δ ( ω + k i j ) ) ) ( e j Δ φ i j e j Δ φ i j j 2 ) ( 1 j 2 ( δ ( ω k i j ) + δ ( ω + k i j ) ) ) ]
= NI m δ ( ω ) + i , j = 1 ; i < j N 1 2 I m [ e j Δ φ i j ( δ ( ω k i j ) + δ ( ω + k i j ) + δ ( ω k i j ) δ ( ω + k i j ) ) + e j Δ φ i j ( δ ( ω k i j ) + δ ( ω + k i j ) + δ ( ω k i j ) δ ( ω + k i j ) ) ]
= NI m δ ( ω ) + i , j = 1 ; i < j N I m [ e j Δ φ i j δ ( ω k i j ) + e j Δ φ i j δ ( ω + k i j ) ]

Metrics