Abstract

We demonstrate the possibility of using transparent conducting oxides [aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), indium tin oxide (ITO)] to form Tamm plasmon polaritons in the near-infrared spectral range where the permittivity of oxides is near zero. The spectral properties of the structures are investigated in the framework of the temporal coupled-mode theory and confirmed by the transfer matrix method. It is found that in the critical coupling conditions, the maximal $ Q $-factor of a Tamm plasmon polariton is achieved when a photonic crystal is conjugated with the AZO film, while at the conjugation with the ITO films, the broadest spectral line is obtained. The sensitivity of the wavelength and spectral width of the Tamm plasmon polariton to changes in the oxide film thickness, bulk concentration of a dopant, and angle of incidence is demonstrated.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides

Enrico Giuseppe Carnemolla, Lucia Caspani, Clayton DeVault, Matteo Clerici, Stefano Vezzoli, Vincenzo Bruno, Vladimir M. Shalaev, Daniele Faccio, Alexandra Boltasseva, and Marcello Ferrera
Opt. Mater. Express 8(11) 3392-3400 (2018)

Broadband Tamm plasmon polariton

Andrey M. Vyunishev, Rashid G. Bikbaev, Sergey E. Svyakhovskiy, Ivan V. Timofeev, Pavel S. Pankin, Stanislav A. Evlashin, Stepan Ya. Vetrov, Sergey A. Myslivets, and Vasily G. Arkhipkin
J. Opt. Soc. Am. B 36(8) 2299-2305 (2019)

Plasmon polaritons in the near infrared on fluorine doped tin oxide films

Lorenzo Dominici, Francesco Michelotti, Thomas M. Brown, Andrea Reale, and Aldo Di Carlo
Opt. Express 17(12) 10155-10167 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
    [Crossref]
  2. M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
    [Crossref]
  3. M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
    [Crossref]
  4. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
    [Crossref]
  5. X.-L. Zhang, J. Feng, X.-C. Han, Y.-F. Liu, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices,” Optica 2, 579–584 (2015).
    [Crossref]
  6. C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 262–267 (2015).
    [Crossref]
  7. Y. Gong, X. Liu, L. Wang, H. Lu, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011).
    [Crossref]
  8. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
    [Crossref]
  9. M. Fang, F. Shi, and Y. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2016).
    [Crossref]
  10. C.-H. Xue, F. Wu, H.-T. Jiang, Y. Li, Y.-W. Zhang, and H. Chen, “Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons,” Sci. Rep. 6, 39418 (2016).
    [Crossref]
  11. W. Zhang and S. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283, 2622–2626 (2010).
    [Crossref]
  12. X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
    [Crossref]
  13. Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, T. Nagao, and K.-P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
    [Crossref]
  14. Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
    [Crossref]
  15. S.-G. Huang, K.-P. Chen, and S.-C. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7, 1267–1273 (2017).
    [Crossref]
  16. B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1, 775–780 (2014).
    [Crossref]
  17. A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
    [Crossref]
  18. S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion,” J. Exp. Theor. Phys. 117, 988–998 (2013).
    [Crossref]
  19. S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “The optical Tamm states at the edges of a photonic crystal bounded by one or two layers of a strongly anisotropic nanocomposite,” Opt. Commun. 395, 275–281 (2017).
    [Crossref]
  20. S. Y. Vetrov, P. S. Pankin, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles,” J. Opt. 18, 065106 (2016).
    [Crossref]
  21. R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and nanoporous silver,” J. Opt. 19, 015104 (2017).
    [Crossref]
  22. R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a gyroid layer,” J. Opt. Soc. Am. B 34, 2198–2202 (2017).
    [Crossref]
  23. S. Y. Vetrov, R. G. Bikbaev, N. V. Rudakova, K.-P. Chen, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite,” J. Opt. 19, 085103 (2017).
    [Crossref]
  24. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [invited],” Opt. Mater. Express 1, 1090–1099 (2011).
    [Crossref]
  25. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
    [Crossref]
  26. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref]
  27. G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Alternative plasmonic materials,” in Modern Plasmonics (Elsevier, 2014), pp. 189–221.
  28. J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
    [Crossref]
  29. S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
    [Crossref]
  30. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
    [Crossref]
  31. A. Ciattoni, C. Rizza, A. Marini, A. Di Falco, D. Faccio, and M. Scalora, “Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media,” Laser Photon. Rev. 10, 517–525 (2016).
    [Crossref]
  32. R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
    [Crossref]
  33. I. C. Reines, M. G. Wood, T. S. Luk, D. K. Serkland, and S. Campione, “Compact epsilon-near-zero silicon photonic phase modulators,” Opt. Express 26, 21594–21605 (2018).
    [Crossref]
  34. Y. Xu and J. Xiao, “Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides,” Opt. Express 24, 15373–15382 (2016).
    [Crossref]
  35. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
    [Crossref]
  36. J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
    [Crossref]
  37. A. Davoyan, A. Mahmoud, and N. Engheta, “Optical isolation with epsilon-near-zero metamaterials,” Opt. Express 21, 3279–3286 (2013).
    [Crossref]
  38. R. Bikbaev, S. Vetrov, and I. Timofeev, “Two types of localized states in a photonic crystal bounded by an epsilon near zero nanocomposite,” Photonics 5, 22 (2018).
    [Crossref]
  39. R. Bikbaev, S. Vetrov, and I. Timofeev, “Epsilon-near-zero absorber by tamm plasmon polariton,” Photonics 6, 28 (2019).
    [Crossref]
  40. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  41. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  42. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979).
    [Crossref]
  43. S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.
  44. A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
    [Crossref]

2019 (2)

2018 (3)

I. C. Reines, M. G. Wood, T. S. Luk, D. K. Serkland, and S. Campione, “Compact epsilon-near-zero silicon photonic phase modulators,” Opt. Express 26, 21594–21605 (2018).
[Crossref]

R. Bikbaev, S. Vetrov, and I. Timofeev, “Two types of localized states in a photonic crystal bounded by an epsilon near zero nanocomposite,” Photonics 5, 22 (2018).
[Crossref]

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

2017 (7)

S. Y. Vetrov, R. G. Bikbaev, N. V. Rudakova, K.-P. Chen, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite,” J. Opt. 19, 085103 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “The optical Tamm states at the edges of a photonic crystal bounded by one or two layers of a strongly anisotropic nanocomposite,” Opt. Commun. 395, 275–281 (2017).
[Crossref]

R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and nanoporous silver,” J. Opt. 19, 015104 (2017).
[Crossref]

S.-G. Huang, K.-P. Chen, and S.-C. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7, 1267–1273 (2017).
[Crossref]

R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a gyroid layer,” J. Opt. Soc. Am. B 34, 2198–2202 (2017).
[Crossref]

2016 (8)

Y. Xu and J. Xiao, “Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides,” Opt. Express 24, 15373–15382 (2016).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, T. Nagao, and K.-P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref]

S. Y. Vetrov, P. S. Pankin, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles,” J. Opt. 18, 065106 (2016).
[Crossref]

M. Fang, F. Shi, and Y. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2016).
[Crossref]

C.-H. Xue, F. Wu, H.-T. Jiang, Y. Li, Y.-W. Zhang, and H. Chen, “Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons,” Sci. Rep. 6, 39418 (2016).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

A. Ciattoni, C. Rizza, A. Marini, A. Di Falco, D. Faccio, and M. Scalora, “Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media,” Laser Photon. Rev. 10, 517–525 (2016).
[Crossref]

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

2015 (3)

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

X.-L. Zhang, J. Feng, X.-C. Han, Y.-F. Liu, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices,” Optica 2, 579–584 (2015).
[Crossref]

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 262–267 (2015).
[Crossref]

2014 (1)

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1, 775–780 (2014).
[Crossref]

2013 (4)

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion,” J. Exp. Theor. Phys. 117, 988–998 (2013).
[Crossref]

A. Davoyan, A. Mahmoud, and N. Engheta, “Optical isolation with epsilon-near-zero metamaterials,” Opt. Express 21, 3279–3286 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

2012 (1)

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

2011 (4)

2010 (2)

W. Zhang and S. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283, 2622–2626 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

2008 (2)

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

2007 (2)

M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

1979 (1)

Abdala, N. L.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1, 775–780 (2014).
[Crossref]

Abram, R. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Alù, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Angelomé, P. C.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1, 775–780 (2014).
[Crossref]

Arkhipkin, V. G.

A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
[Crossref]

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Auguié, B.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1, 775–780 (2014).
[Crossref]

Bahoura, M.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Barnakov, Y. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Baryshev, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

Bellessa, J.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

Bikbaev, R.

R. Bikbaev, S. Vetrov, and I. Timofeev, “Epsilon-near-zero absorber by tamm plasmon polariton,” Photonics 6, 28 (2019).
[Crossref]

R. Bikbaev, S. Vetrov, and I. Timofeev, “Two types of localized states in a photonic crystal bounded by an epsilon near zero nanocomposite,” Photonics 5, 22 (2018).
[Crossref]

Bikbaev, R. G.

A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, N. V. Rudakova, K.-P. Chen, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite,” J. Opt. 19, 085103 (2017).
[Crossref]

R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a gyroid layer,” J. Opt. Soc. Am. B 34, 2198–2202 (2017).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “The optical Tamm states at the edges of a photonic crystal bounded by one or two layers of a strongly anisotropic nanocomposite,” Opt. Commun. 395, 275–281 (2017).
[Crossref]

R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and nanoporous silver,” J. Opt. 19, 015104 (2017).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion,” J. Exp. Theor. Phys. 117, 988–998 (2013).
[Crossref]

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Boltasseva, A.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [invited],” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Alternative plasmonic materials,” in Modern Plasmonics (Elsevier, 2014), pp. 189–221.

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Brand, S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Brongersma, M. L.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

Campione, S.

Caspani, L.

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Chang, C.-Y.

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 262–267 (2015).
[Crossref]

Chaudhuri, K.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Chen, H.

C.-H. Xue, F. Wu, H.-T. Jiang, Y. Li, Y.-W. Zhang, and H. Chen, “Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons,” Sci. Rep. 6, 39418 (2016).
[Crossref]

Chen, K.-P.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, N. V. Rudakova, K.-P. Chen, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite,” J. Opt. 19, 085103 (2017).
[Crossref]

S.-G. Huang, K.-P. Chen, and S.-C. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7, 1267–1273 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, T. Nagao, and K.-P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref]

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 262–267 (2015).
[Crossref]

Chen, Q.-D.

Chen, Y.

M. Fang, F. Shi, and Y. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2016).
[Crossref]

Chen, Y.-H.

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 262–267 (2015).
[Crossref]

Choudhury, S. M.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Ciattoni, A.

A. Ciattoni, C. Rizza, A. Marini, A. Di Falco, D. Faccio, and M. Scalora, “Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media,” Laser Photon. Rev. 10, 517–525 (2016).
[Crossref]

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Clerici, M.

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Dao, T. D.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, T. Nagao, and K.-P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref]

Davoyan, A.

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

DeVault, C.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Di Falco, A.

A. Ciattoni, C. Rizza, A. Marini, A. Di Falco, D. Faccio, and M. Scalora, “Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media,” Laser Photon. Rev. 10, 517–525 (2016).
[Crossref]

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Dorofeenko, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

Egorov, A. Y.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Emani, N. K.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

Engheta, N.

A. Davoyan, A. Mahmoud, and N. Engheta, “Optical isolation with epsilon-near-zero metamaterials,” Opt. Express 21, 3279–3286 (2013).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Evlashin, S. A.

A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
[Crossref]

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Faccio, D.

A. Ciattoni, C. Rizza, A. Marini, A. Di Falco, D. Faccio, and M. Scalora, “Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media,” Laser Photon. Rev. 10, 517–525 (2016).
[Crossref]

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Fainstein, A.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1, 775–780 (2014).
[Crossref]

Fang, M.

M. Fang, F. Shi, and Y. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2016).
[Crossref]

Feng, J.

X.-L. Zhang, J. Feng, X.-C. Han, Y.-F. Liu, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices,” Optica 2, 579–584 (2015).
[Crossref]

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

Fuertes, M. C.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1, 775–780 (2014).
[Crossref]

Gong, Y.

Goto, T.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

Granovsky, A. B.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

Gu, L.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Gubaydullin, A. R.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

Guler, U.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

Han, X.-C.

Haus, H.

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Huang, S.-G.

Illia, G. J. A. A. S.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1, 775–780 (2014).
[Crossref]

Inoue, M.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

Iorsh, I.

M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Iorsh, I. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

Ishii, S.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, T. Nagao, and K.-P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref]

Ivanov, K. A.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

Jeng, S.-C.

Jiang, H.-T.

C.-H. Xue, F. Wu, H.-T. Jiang, Y. Li, Y.-W. Zhang, and H. Chen, “Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons,” Sci. Rep. 6, 39418 (2016).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Kaipurath, R. P. M.

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Kaliteevski, M. A.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kang, J.-H.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

Kavokin, A. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kildishev, A. V.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Kim, J.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [invited],” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Alternative plasmonic materials,” in Modern Plasmonics (Elsevier, 2014), pp. 189–221.

Kinsey, N.

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Alternative plasmonic materials,” in Modern Plasmonics (Elsevier, 2014), pp. 189–221.

Kolykhalova, E. D.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

Kuo, H.-C.

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 262–267 (2015).
[Crossref]

Lemaitre, A.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

Li, X.-B.

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

Li, Y.

C.-H. Xue, F. Wu, H.-T. Jiang, Y. Li, Y.-W. Zhang, and H. Chen, “Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons,” Sci. Rep. 6, 39418 (2016).
[Crossref]

Lisyansky, A. A.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

Liu, X.

Liu, Y.-F.

Livenere, J.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Lu, H.

Luk, T. S.

Mahmoud, A.

Marini, A.

A. Ciattoni, C. Rizza, A. Marini, A. Di Falco, D. Faccio, and M. Scalora, “Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media,” Laser Photon. Rev. 10, 517–525 (2016).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Merzlikin, A. M.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Mundle, R.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Myslivets, S. A.

A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
[Crossref]

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Nagao, T.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, T. Nagao, and K.-P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref]

Naik, G.

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Alternative plasmonic materials,” in Modern Plasmonics (Elsevier, 2014), pp. 189–221.

Naik, G. V.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [invited],” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

Noginov, M. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Pankin, P. S.

A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

S. Y. Vetrov, P. S. Pankin, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles,” J. Opt. 18, 065106 (2016).
[Crossref]

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Park, J.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

Pietrzyk, M.

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Podolskiy, V. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Pozina, G.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

Pradhan, A. K.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Reines, I. C.

Rizza, C.

A. Ciattoni, C. Rizza, A. Marini, A. Di Falco, D. Faccio, and M. Scalora, “Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media,” Laser Photon. Rev. 10, 517–525 (2016).
[Crossref]

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Roger, T.

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Rudakova, N. V.

S. Y. Vetrov, R. G. Bikbaev, N. V. Rudakova, K.-P. Chen, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite,” J. Opt. 19, 085103 (2017).
[Crossref]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Sasin, M. E.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Scalora, M.

A. Ciattoni, C. Rizza, A. Marini, A. Di Falco, D. Faccio, and M. Scalora, “Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media,” Laser Photon. Rev. 10, 517–525 (2016).
[Crossref]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Senellart, P.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

Serkland, D. K.

Shalaev, V. M.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Shelykh, I. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Shi, F.

M. Fang, F. Shi, and Y. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2016).
[Crossref]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Song, J.-F.

X.-L. Zhang, J. Feng, X.-C. Han, Y.-F. Liu, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices,” Optica 2, 579–584 (2015).
[Crossref]

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

Sun, H.-B.

X.-L. Zhang, J. Feng, X.-C. Han, Y.-F. Liu, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices,” Optica 2, 579–584 (2015).
[Crossref]

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

Sun, M.-G.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, T. Nagao, and K.-P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref]

Svyakhovskiy, S. E.

A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
[Crossref]

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Symonds, C.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

Timofeev, I.

R. Bikbaev, S. Vetrov, and I. Timofeev, “Epsilon-near-zero absorber by tamm plasmon polariton,” Photonics 6, 28 (2019).
[Crossref]

R. Bikbaev, S. Vetrov, and I. Timofeev, “Two types of localized states in a photonic crystal bounded by an epsilon near zero nanocomposite,” Photonics 5, 22 (2018).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, N. V. Rudakova, K.-P. Chen, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite,” J. Opt. 19, 085103 (2017).
[Crossref]

R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a gyroid layer,” J. Opt. Soc. Am. B 34, 2198–2202 (2017).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “The optical Tamm states at the edges of a photonic crystal bounded by one or two layers of a strongly anisotropic nanocomposite,” Opt. Commun. 395, 275–281 (2017).
[Crossref]

R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and nanoporous silver,” J. Opt. 19, 015104 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

S. Y. Vetrov, P. S. Pankin, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles,” J. Opt. 18, 065106 (2016).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion,” J. Exp. Theor. Phys. 117, 988–998 (2013).
[Crossref]

Timofeev, I. V.

A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
[Crossref]

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Tsai, Y.-L.

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 262–267 (2015).
[Crossref]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Vetrov, S.

R. Bikbaev, S. Vetrov, and I. Timofeev, “Epsilon-near-zero absorber by tamm plasmon polariton,” Photonics 6, 28 (2019).
[Crossref]

R. Bikbaev, S. Vetrov, and I. Timofeev, “Two types of localized states in a photonic crystal bounded by an epsilon near zero nanocomposite,” Photonics 5, 22 (2018).
[Crossref]

Vetrov, S. Y.

A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
[Crossref]

R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a gyroid layer,” J. Opt. Soc. Am. B 34, 2198–2202 (2017).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “The optical Tamm states at the edges of a photonic crystal bounded by one or two layers of a strongly anisotropic nanocomposite,” Opt. Commun. 395, 275–281 (2017).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, N. V. Rudakova, K.-P. Chen, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite,” J. Opt. 19, 085103 (2017).
[Crossref]

R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and nanoporous silver,” J. Opt. 19, 015104 (2017).
[Crossref]

S. Y. Vetrov, P. S. Pankin, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles,” J. Opt. 18, 065106 (2016).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion,” J. Exp. Theor. Phys. 117, 988–998 (2013).
[Crossref]

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Vinogradov, A. P.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

Vyunishev, A. M.

A. M. Vyunishev, R. G. Bikbaev, S. E. Svyakhovskiy, I. V. Timofeev, P. S. Pankin, S. A. Evlashin, S. Y. Vetrov, S. A. Myslivets, and V. G. Arkhipkin, “Broadband Tamm plasmon polariton,” J. Opt. Soc. Am. B 36, 2299–2305 (2019).
[Crossref]

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Wang, D.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Wang, G.

Wang, L.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Wood, M. G.

Wu, F.

C.-H. Xue, F. Wu, H.-T. Jiang, Y. Li, Y.-W. Zhang, and H. Chen, “Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons,” Sci. Rep. 6, 39418 (2016).
[Crossref]

Xiao, J.

Xu, Y.

Xue, C.-H.

C.-H. Xue, F. Wu, H.-T. Jiang, Y. Li, Y.-W. Zhang, and H. Chen, “Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons,” Sci. Rep. 6, 39418 (2016).
[Crossref]

Yang, Z.-Y.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, T. Nagao, and K.-P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref]

Yeh, P.

Yokoyama, T.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, T. Nagao, and K.-P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref]

Yu, S.

W. Zhang and S. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283, 2622–2626 (2010).
[Crossref]

Zhang, W.

W. Zhang and S. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283, 2622–2626 (2010).
[Crossref]

Zhang, X.-L.

X.-L. Zhang, J. Feng, X.-C. Han, Y.-F. Liu, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices,” Optica 2, 579–584 (2015).
[Crossref]

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

Zhang, Y.-W.

C.-H. Xue, F. Wu, H.-T. Jiang, Y. Li, Y.-W. Zhang, and H. Chen, “Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons,” Sci. Rep. 6, 39418 (2016).
[Crossref]

Zhu, G.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

ACS Photon. (2)

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photon. 4, 2212–2219 (2017).
[Crossref]

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. S. Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1, 775–780 (2014).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Appl. Phys. Lett. (3)

X.-L. Zhang, J.-F. Song, X.-B. Li, J. Feng, and H.-B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, “Tunability and optimization of coupling efficiency in Tamm plasmon modes,” IEEE J. Sel. Top. Quantum Electron. 21, 262–267 (2015).
[Crossref]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

J. Exp. Theor. Phys. (1)

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion,” J. Exp. Theor. Phys. 117, 988–998 (2013).
[Crossref]

J. Opt. (3)

S. Y. Vetrov, P. S. Pankin, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles,” J. Opt. 18, 065106 (2016).
[Crossref]

R. G. Bikbaev, S. Y. Vetrov, and I. Timofeev, “The optical Tamm states at the interface between a photonic crystal and nanoporous silver,” J. Opt. 19, 015104 (2017).
[Crossref]

S. Y. Vetrov, R. G. Bikbaev, N. V. Rudakova, K.-P. Chen, and I. Timofeev, “Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite,” J. Opt. 19, 085103 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

A. Ciattoni, C. Rizza, A. Marini, A. Di Falco, D. Faccio, and M. Scalora, “Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media,” Laser Photon. Rev. 10, 517–525 (2016).
[Crossref]

Nanophotonics (1)

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7, 959–987 (2018).
[Crossref]

Opt. Commun. (2)

S. Y. Vetrov, R. G. Bikbaev, and I. Timofeev, “The optical Tamm states at the edges of a photonic crystal bounded by one or two layers of a strongly anisotropic nanocomposite,” Opt. Commun. 395, 275–281 (2017).
[Crossref]

W. Zhang and S. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283, 2622–2626 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (2)

Optica (1)

Photonics (2)

R. Bikbaev, S. Vetrov, and I. Timofeev, “Two types of localized states in a photonic crystal bounded by an epsilon near zero nanocomposite,” Photonics 5, 22 (2018).
[Crossref]

R. Bikbaev, S. Vetrov, and I. Timofeev, “Epsilon-near-zero absorber by tamm plasmon polariton,” Photonics 6, 28 (2019).
[Crossref]

Phys. Rev. B (2)

M. A. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[Crossref]

Phys. Rev. Lett. (1)

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 14–16 (2008).
[Crossref]

Plasmonics (1)

M. Fang, F. Shi, and Y. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11, 197–203 (2016).
[Crossref]

Sci. Rep. (4)

C.-H. Xue, F. Wu, H.-T. Jiang, Y. Li, Y.-W. Zhang, and H. Chen, “Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons,” Sci. Rep. 6, 39418 (2016).
[Crossref]

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7, 9014 (2017).
[Crossref]

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref]

R. P. M. Kaipurath, M. Pietrzyk, L. Caspani, T. Roger, M. Clerici, C. Rizza, A. Ciattoni, A. Di Falco, and D. Faccio, “Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials,” Sci. Rep. 6, 27700 (2016).
[Crossref]

Science (1)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Superlattices Microstruct. (1)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

Other (4)

G. Naik, J. Kim, N. Kinsey, and A. Boltasseva, “Alternative plasmonic materials,” in Modern Plasmonics (Elsevier, 2014), pp. 189–221.

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

S. E. Svyakhovskiy, R. G. Bikbaev, S. A. Myslivets, S. A. Evlashin, A. M. Vyunishev, P. S. Pankin, I. V. Timofeev, S. Y. Vetrov, and V. G. Arkhipkin, “Experimental demonstration of broadband optical Tamm states in photonic crystal,” in International Conference Laser Optics (ICLO) (2018), p. 309.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic representation of PC bounded by TCO layer.
Fig. 2.
Fig. 2. Dependences of the real (solid line) and imaginary (dashed line) parts of the TCO permittivity on the incident radiation wavelength.
Fig. 3.
Fig. 3. Dependence of the absorptance of the TCO films on their transmittance at different film thicknesses. The points of intersection of the lines with the green line meet critical coupling conditions [Eq. (13)].
Fig. 4.
Fig. 4. Reflectance spectra of a PC conjugated with (a) AZO, (b) GZO, and (c) ITO layers of different thicknesses.
Fig. 5.
Fig. 5. Local field intensity distribution at the TPP wavelength normalized to the input intensity for the cases of conjugation of a PC with the AZO, GZO, and ITO films. The green line shows the spatial distribution of the refractive index of the PC layers. The simulation parameters are presented in Table 2.
Fig. 6.
Fig. 6. Reflectance spectra for the (a) AZO–PC, (b) GZO–PC, and (c) ITO–PC structures at different angles of incidence of the radiation onto the structure.
Fig. 7.
Fig. 7. Reflectance spectra of the air–TCO–silicon dioxide structures.
Fig. 8.
Fig. 8. Dependences of the real (solid line) and imaginary (dashed line) parts of the TCO permittivity on volume concentrations of the doping metal. The circles represent experimental data from [24], and solid lines represent interpolated data.
Fig. 9.
Fig. 9. Reflectance spectra for the (a) AZO–PC, (b) GZO–PC, and (c) ITO–PC structures at different volume concentrations of the doping metal. The TCO layer thicknesses are $ {d_{\rm AZO}} = 480\,\,{\rm{nm}} $ , $ {d_{\rm GZO}} = 280\,\,{\rm{nm}} $ , and $ {d_{\rm ITO}} = 260\,\,{\rm{nm}} $ . The legend is valid for all three plots.

Tables (2)

Tables Icon

Table 1. Drude Parameters for TCO Materials

Tables Icon

Table 2. Parameters of the Structures

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε 0 ω p 2 ω ( ω + i γ ) + f 1 ω 1 2 ω 1 2 ω ( ω + i γ 1 ) .
d A / d t = i ω 0 A A / τ ,
d A / d t = i ω 0 A A / τ 1 A / τ 2 + α 1 s 1 + + α 2 s 2 + ,
d A d t = i ω 0 A l = 1 2 A / τ l + l = 1 2 2 τ l s l + ,
s l = s l + + 2 τ l A .
i ω A = i ω 0 A l = 1 2 A / τ l + 2 τ 1 s 1 + , s 1 = s 1 + + 2 τ 1 A , s 2 = 2 τ 2 A
T ( ω ) = 2 τ 2 | A | 2 | s 1 + | 2 = 4 τ 1 τ 2 ( ω ω 0 ) 2 + ( 1 τ 1 + 1 τ 2 ) 2 .
R ( ω ) = | s 1 | 2 | s 1 + | 2 = ( ω ω 0 ) 2 + ( 1 τ 1 1 τ 2 ) 2 ( ω ω 0 ) 2 + ( 1 τ 1 + 1 τ 2 ) 2 .
2 γ = l = 1 N 1 τ l ,
r l = 1 + 2 γ l i ( ω 0 ω ) + γ l 1 .
r l ( ω = ω 0 ) = 0.
γ T C O : γ A : γ P h C = T T C O : A T C O : T P h C .
γ T C O = γ A ; γ P h C = 0 T T C O = A T C O ; T P h C = 0.
T T C O = n 3 n 1 | t 12 + t 23 e i β 1 + r 12 r 23 e 2 i β | 2 , R T C O = | r 12 + r 23 e 2 i β 1 + r 12 r 23 e 2 i β | 2 , A T C O = 1 T T C O R T C O ,
M = T 01 T 12 T N 1 , N T N , S ,
T n 1 , n = 1 2 ( ( 1 + h ) e i α n γ n ( 1 h ) e i α n γ n ( 1 h ) e i α n γ n ( 1 + h ) e i α n γ n ) .
T ( ω ) = 1 | M ^ 11 | 2 , R ( ω ) = | M ^ 21 | 2 | M ^ 11 | 2 , A ( ω ) = 1 T ( ω ) R ( ω ) ,

Metrics