Abstract

Due to the high design freedom, metasurfaces are widely applied to realize miniaturized optical devices with high performance. Recently, assisted by optical design, monochromatic aberration–corrected lenses, composed of two metasurface layers, have been proposed for a well-focused light spot in the focal plane at large incident angles. However, the focus cannot be tuned in these structures. In this paper, based on the principle of the Moiré lens, a wide-angle ($\pm 30^\circ $) metalens with continuously tunable and monochromatic aberration–corrected focus that consists of two cascaded face-to-face metasurfaces is proposed. The focal length of the lens can be tuned by the mutual rotation of the metasurfaces. Simulation results show that the focal plane is changed to 5.34 µm when the rotation angle is increased by 0.4 rad at the incident wavelength of 810 nm. It is anticipated that the proposed metalens may have a good application prospect in integrated miniaturized imaging systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable step-zoom metalens without optical and mechanical compensations

Rao Fu, Zile Li, Guoxing Zheng, Ming Chen, Yan Yang, Jin Tao, Lin Wu, and Qiling Deng
Opt. Express 27(9) 12221-12230 (2019)

Dual field-of-view step-zoom metalens

Guoxing Zheng, Weibiao Wu, Zile Li, Shuang Zhang, Muhammad Qasim Mehmood, Ping’an He, and Song Li
Opt. Lett. 42(7) 1261-1264 (2017)

All-dielectric metalens for terahertz wave imaging

Xue Jiang, Hao Chen, Zeyu Li, Hongkuan Yuan, Luyao Cao, Zhenfei Luo, Kun Zhang, Zhihai Zhang, Zhongquan Wen, Li-guo Zhu, Xun Zhou, Gaofeng Liang, Desheng Ruan, Lianghui Du, Lingfang Wang, and Gang Chen
Opt. Express 26(11) 14132-14142 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
    [Crossref]
  2. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
    [Crossref]
  3. I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
    [Crossref]
  4. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
    [Crossref]
  5. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  6. Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
    [Crossref]
  7. X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
    [Crossref]
  8. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
    [Crossref]
  9. N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
    [Crossref]
  10. F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
    [Crossref]
  11. Z. J. Ma, S. M. Hanham, Y. D. Gong, and M. H. Hong, “All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances,” Opt. Lett. 43, 911–914 (2018).
    [Crossref]
  12. E. Hecht, Optics, 5th ed. (Pearson, 2016).
  13. F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
    [Crossref]
  14. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
    [Crossref]
  15. W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
    [Crossref]
  16. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
    [Crossref]
  17. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
    [Crossref]
  18. B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
    [Crossref]
  19. R. Fu, Z. Li, G. Zheng, M. Chen, Y. Yang, J. Tao, L. Wu, and Q. Deng, “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27, 12221–12230 (2019).
    [Crossref]
  20. H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
    [Crossref]
  21. S. Bernet and M. Ritsch-Marte, “Adjustable refractive power from diffractive Moiré elements,” Appl. Opt. 47, 3722–3730 (2008).
    [Crossref]
  22. S. Bernet, W. Harm, and M. Ritsch-Marte, “Demonstration of focus-tunable diffractive Moiré-lenses,” Opt. Express 21, 6955–6966 (2013).
    [Crossref]
  23. N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
    [Crossref]
  24. A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
    [Crossref]

2019 (2)

R. Fu, Z. Li, G. Zheng, M. Chen, Y. Yang, J. Tao, L. Wu, and Q. Deng, “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27, 12221–12230 (2019).
[Crossref]

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

2018 (5)

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Z. J. Ma, S. M. Hanham, Y. D. Gong, and M. H. Hong, “All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances,” Opt. Lett. 43, 911–914 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

2017 (4)

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

2016 (2)

H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

2015 (5)

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

2014 (1)

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref]

2013 (2)

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

S. Bernet, W. Harm, and M. Ritsch-Marte, “Demonstration of focus-tunable diffractive Moiré-lenses,” Opt. Express 21, 6955–6966 (2013).
[Crossref]

2012 (1)

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

2008 (1)

Agarwal, R.

H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Aieta, F.

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Arbabi, A.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Arbabi, E.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Bernet, S.

Cao, Y.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Cent, S. V.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Chan, K.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Cheah, K. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, B. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Chen, J.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Chen, M.

R. Fu, Z. Li, G. Zheng, M. Chen, Y. Yang, J. Tao, L. Wu, and Q. Deng, “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27, 12221–12230 (2019).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, M. K.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Chen, S.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

Chen, Y. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Cheng, H. C.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Chieh, L. Y.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Chieh, W. P.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Cui, T. J.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Deng, J.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Deng, Q.

Deng, Z.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Ding, F.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Ding, J.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Ee, H.-S.

H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Faraon, A.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Fu, R.

Fu, Y. H.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Gaburro, Z.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Genevet, P.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Gong, Y. D.

Groever, B.

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

Gu, J. Q.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Han, J. G.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Han, S.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Hanham, S. M.

Harm, W.

He, S. L.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Hecht, E.

E. Hecht, Optics, 5th ed. (Pearson, 2016).

Hong, M. H.

Horie, Y.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Huang, T. T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Hung, L. S.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Jang, J.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Ji, W.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Jiang, M.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Jun Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Kamali, S. M.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Kats, M.

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

Kats, M. A.

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Kildishev, A. V.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Kim, I.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Kuan, C.-H.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Kurt, H.

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Kuznetsov, A. I.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Li, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Li, K. F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Li, L.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Li, T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Li, Y. B.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Li, Z.

Lin, R. M.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Liu, S.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Luk’yanchuk, B.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Ma, Z. J.

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Nam, K. T.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Ozdemir, A.

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Ozer, A.

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Paniagua-Domínguez, R.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Qiu, C.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Rho, J.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Ritsch-Marte, M.

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Shalaev, V. M.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Shi, T.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Shuming, W.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Tao, J.

Tian, Z.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Wan, X.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Wang, G. P.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Wang, J. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Wang, X.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Wang, Y.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Wang, Z.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wang, Z. X.

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

Wen, D.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wern, C. J.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Wong, P. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wu, L.

Wu, P. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Xu, B.

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Xu, J.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Yang, Y.

Yilmaz, N.

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Yoon, G.

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Yu, N. F.

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Yu, Y. F.

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Yue, F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Yue, W. S.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhang, S.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Zhang, W. L.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Zhang, X. Q.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Zheng, G.

R. Fu, Z. Li, G. Zheng, M. Chen, Y. Yang, J. Tao, L. Wu, and Q. Deng, “Reconfigurable step-zoom metalens without optical and mechanical compensations,” Opt. Express 27, 12221–12230 (2019).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Zhuang, X.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

ACS Nano (1)

F. Ding, Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref]

ACS Photon. (1)

I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, “Outfitting next generation displays with optical metasurfaces,” ACS Photon. 5, 3876–3895 (2018).
[Crossref]

Adv. Mater. (1)

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25, 4567–4572 (2013).
[Crossref]

Appl. Opt. (1)

J. Opt. (1)

N. Yilmaz, A. Ozdemir, A. Ozer, and H. Kurt, “Rotationally tunable polarization-insensitive single and multifocal metasurface,” J. Opt. 21, 045105 (2019).
[Crossref]

Laser Photon. Rev. (1)

Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, “High-transmission dielectric metasurface with 2π phase control at visible wavelengths,” Laser Photon. Rev. 9, 412–418 (2015).
[Crossref]

Light Sci. Appl. (1)

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, and X. Wang, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7, 78 (2018).
[Crossref]

Nano Lett. (3)

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

H.-S. Ee and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16, 2818–2823 (2016).
[Crossref]

Nat. Commun. (4)

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, and K. W. Cheah, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

W. Shuming, W. P. Chieh, S. V. Cent, L. Y. Chieh, H. C. Cheng, C. J. Wern, L. S. Hung, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Nat. Mater. (1)

N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref]

Nat. Nanotechnol. (3)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Jun Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Nat. Photonics (1)

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11, 415–420 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Science (1)

F. Aieta, M. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

Other (1)

E. Hecht, Optics, 5th ed. (Pearson, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) and (c) Schematic illustrations of the focusing effect of a traditional lens and a monochromatic aberration–corrected lens at oblique incident angles, respectively. The blue, green, red, and yellow lines represent $\theta = {{0}}^\circ $ , 10°, 20°, and 30°, respectively. $\theta $ is the incident angle. (b) and (d) Theoretically calculated field distributions on the focal plane of corresponding metasurfaces for different incident angles. The radiuses of the two metasurfaces are both 14 µm. Scale bar: 1 µm.
Fig. 2.
Fig. 2. (a) Schematic of the tunable monochromatic aberration–corrected lens, which consists of two face-to-face metasurfaces. The focal plane is tuned by the mutual rotation angle $\beta $ of the two metasurfaces. (b) Side view of the metalens and top view of a single-layer metasurface. $d$ denotes the distance between the two metasurfaces. (c) Simulated transmission and phase of one unit cell, as a function of the nano-pillar radius. The subplot shows the structure of one unit cell.
Fig. 3.
Fig. 3. (a) and (b) Theoretically required phase profiles of the two metasurfaces, calculated by Eq. (6), when $\beta = 1\,\,{\rm{rad}}$ . (c) Superposition of the two phase-profiles in (a) and (b). (d) and (e) Simulation results of transmitted phase profiles of the two metasurfaces. (f) Simulation results of transmitted phase profile of the bilayer metasurface.
Fig. 4.
Fig. 4. Electric field distributions of the metalens focus corresponding to the rotation angle $\beta = 1\,\,{\rm{rad}}$ . (a)–(d) Field distributions of the $xz$ plane corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively. The red dotted line indicates the position of the focal plane corresponding to $\theta = 0^\circ $ . (e)–(h) Field distributions of the focal plane at $z = 15.21\,\,\unicode{x00B5}{\rm{m}}$ , corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively.
Fig. 5.
Fig. 5. Electric field distributions of the metalens focus corresponding to the rotation angle $\beta = 1.2\,\,{\rm{rad}}$ . (a)–(d) Field distributions of the $xz$ plane corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively. The red dotted line indicates the position of the focal plane corresponding to $\theta = 0^\circ $ . (e)–(h) Field distributions of the focal plane at $z = 11.55\,\,\unicode{x00B5}{\rm{m}}$ , corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively.
Fig. 6.
Fig. 6. Electric field distributions of the metalens focus corresponding to the rotation angle $\beta = 1.4\,\,{\rm{rad}}$ . (a)–(d) Field distributions of the $xz$ plane corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively. The red dotted line indicates the position of the focal plane corresponding to $\theta = 0^\circ $ . (e)–(h) Field distributions of the focal plane at $z = 9.869\,\,\unicode{x00B5}{\rm{m}}$ , corresponding to the incident angle $\theta = 0^\circ $ , 10°, 20°, and 30°, respectively.
Fig. 7.
Fig. 7. Focusing efficiency of the lens dependent on NA and $\theta $ .
Fig. 8.
Fig. 8. Focal lengths and focusing efficiency dependent on $\beta $ .
Fig. 9.
Fig. 9. Focusing effect of the lens when  $d = 1000\,\,{\rm{nm}}$ . (a)–(d) Electric field distributions in the $xz$ plane and the focal plane corresponding to $\beta = 1\,\,{\rm{rad}}$ , when $\theta = 0^\circ $ and 30°, respectively. (e)–(h) Electric field distributions in the $xz$ plane and the focal plane corresponding to $\beta = 1.2\,\,{\rm{rad}}$ , when $\theta = 0^\circ $ and 30°, respectively. (i)–(l) Electric field distributions in the $xz$ plane and the focal plane corresponding to $\beta = 1.4\,\,{\rm{rad}}$ , when $\theta = 0^\circ $ and 30°, respectively. (m) Focusing efficiency of the lens dependent on NA and $\theta $ .
Fig. 10.
Fig. 10. Enhanced focusing of the Moiré structure with a ${{\rm{SiO}}_2}$ layer between the two metasurfaces. (a) Schematic of one unit cell. (b) Transmission dependent on the thickness of the ${{\rm{SiO}}_2}$ layer. (c)–(f) Field distributions of the structure with a ${{\rm{SiO}}_2}$ layer. (g) Simulated focusing efficiencies corresponding to different incident angles.

Tables (1)

Tables Icon

Table 1. Optimized Parameters Calculated by Zemax Optimization Design

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ ( r ) = 2 π λ ( r 2 + f 2 f ) ,
h ( i ) ( r ) = c ( i ) r 2 1 + 1 ( 1 + k ( i ) ) c ( i ) 2 r 2 + m = 1 5 a m ( i ) r 2 i ,
φ l ( r ) = 2 π λ { n 0 [ H h l ( r ) ] + n 1 h l ( r ) } ,
φ 1 ( α , r ) = α φ l ( r ) , φ 2 ( α , r ) = α φ l ( r ) ,
φ t o t a l = α φ l ( r ) ( α β ) φ l ( r ) = β φ l ( r ) ,
φ 1 ( α , r ) = α r o u n d [ φ l ( r ) ] , φ 2 ( α , r ) = α r o u n d [ φ l ( r ) ] .

Metrics