Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 7,
  • Issue 2,
  • pp. 101-108
  • (1999)

Non-Invasive Fermentation Analysis Using an Artificial Neural Network Algorithm for Processing near Infrared Spectra

Not Accessible

Your library or personal account may give you access

Abstract

The feasibility of using Artificial Neural Networks (ANN) to improve the performance of a fibre optic, near infrared (NIR) spectroscopic probe for monitoring fermentation processes was investigated. A miniature diode array spectrometer, operating between 1100 and 1450 nm, was used for on-line, in situ fermentation monitoring by placing a bifurcated fibre bundle inside a fermentation vessel. Non-linearities in the spectral response were complicated by the combined effects of spectral variations in the OH vibrational bands due to temperature fluctuations and pH variation. As the fermentation proceeds interferences from other absorbing molecules and cell masses increase at an exponential rate. The feasibility of accurately predicting both glucose and ethanol concentrations simultaneously during a fermentation process were assessed by applying Partial Least Squares (PLS) and Artificial Neural Networks (ANN) to the NIR spectral data. For a 5% glucose fermentation, a PLS model was able to predict “on-line” concentrations with standard errors of prediction (SEP) of 0.19% for glucose and 0.11% for ethanol. Three separate on-line fermentation experiments were performed in order to determine the possibility of using a model developed from one experiment to predict the concentrations of another experiment. PLS models produced an average SEP of 0.21% when used to predict different fermentation experiments. The ANN algorithm produced an average SEP of 0.13% on the same data.

© 1999 NIR Publications

PDF Article
More Like This
Quantitative analysis of steel samples using laser-induced breakdown spectroscopy with an artificial neural network incorporating a genetic algorithm

Kuohu Li, Lianbo Guo, Jiaming Li, Xinyan Yang, Rongxing Yi, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Appl. Opt. 56(4) 935-941 (2017)

Non-invasive prediction of hemoglobin levels by principal component and back propagation artificial neural network

Haiquan Ding, Qipeng Lu, Hongzhi Gao, and Zhongqi Peng
Biomed. Opt. Express 5(4) 1145-1152 (2014)

Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS

José L. Tarazona, Jáder Guerrero, Rafael Cabanzo, and E. Mejía-Ospino
Appl. Opt. 51(7) B108-B114 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.