Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 31,
  • Issue 6,
  • pp. 289-297
  • (2023)

Active learning sample selection based on multicriteria

Not Accessible

Your library or personal account may give you access

Abstract

In multivariate calibration problems, model performance is affected significantly by the calibration samples used during model building. In recent years, active learning methods have become one of the best methods for sample selection. However, most active learning methods only select instances from prediction uncertainty or sample space distance, and these single-criteria methods tend to select undesired samples. In addition, sample density characterizes the spatial information carried by the sample, but few studies in quantitative analysis utilize sample density alone to select calibration samples. Considering these issues, based on the k-means clustering algorithm, this paper proposes an active learning sample selection method (Diversity Informativeness Density Active Learning, DIDAL), which combines the three criteria of diversity, informativeness and sample density. The most representative sample is iteratively selected for - addition to the calibration set for modeling and estimating the chemical concentration of analytes. Soybean meal and soy sauce samples were analyzed by DIDAL and compared with existing sample selection methods. The prediction results show that the DIDAL algorithm significantly outperforms several existing algorithms and is close to the performance of full-sample modeling. A model with high prediction accuracy can be constructed by selecting only a few samples using the DIDAL method.

© 2023 The Author(s)

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.