Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 21,
  • Issue 6,
  • pp. 495-509
  • (2013)

Comparing near and Mid-Infrared Reflectance Spectroscopy for Determining Properties of Malagasy Soils, Using Global or LOCAL Calibration

Not Accessible

Your library or personal account may give you access

Abstract

Nowadays, near infrared (NIR) and mid-infrared (mid-IR) reflectance spectroscopy are recognised useful approaches for quantifying soil properties, cost and time effectively. The aim of this work was to compare predictions of soil carbon (C) and nitrogen (N) content, C/N ratio, substrate-induced respiration (SIR) and denitrifying enzyme activity (DEA) using NIR and mid-IR spectroscopy over a diverse set of 360 Malagasy topsoils. Partial least square regression was used for fitting NIR and mid-IR spectra to conventional data through procedures of calibration either global (one prediction model for all samples) or LOCAL (one prediction model per sample). Prediction accuracy was assessed according to validation (r2), standard error of prediction (SEP) in proportion to the mean and ratio of standard deviation to SEP (RPD). Using both NIR and mid-IR spectroscopy, global calibration over the whole sample set yielded predictions that were excellent for C and N (r2 > 0.9, SEP <20%, RPD ⩾ 3), good for C/N, acceptable for SIR, but poor for DEA. LOCAL calibration improved C/N and SIR predictions with both NIR and mid-IR spectroscopy, while DEA prediction became acceptable with NIR spectroscopy only. Additional improvement was achieved when LOCAL calibration was carried out over the fine-textured sub-set, especially for SIR (r2 > 0.9, SEP < 20%, RPD > 3). In contrast, LOCAL calibration over the coarse-textured sub-set was clearly not useful for improving prediction accuracy. NIR outperformed mid-IR spectroscopy whatever the variable, the calibration procedure and the sample set (except for SIR over the coarse-textured sub-set, where both similar), suggesting its possible superiority for tropical soils.

© 2013 IM Publications LLP

PDF Article
More Like This
Accurate and rapid detection of soil and fertilizer properties based on visible/near-infrared spectroscopy

Zhidan Lin, Rujing Wang, Yubing Wang, Liusan Wang, Cuiping Lu, Yang Liu, Zhengyong Zhang, and Likai Zhu
Appl. Opt. 57(18) D69-D73 (2018)

Evaluation of univariate and multivariate calibration strategies for the direct determination of total carbon in soils by laser-induced breakdown spectroscopy: tutorial

Wesley Nascimento Guedes, Diego Victor Babos, Vinícius Câmara Costa, Carla Pereira De Morais, Vitor da Silveira Freitas, Kleydson Stenio, Alfredo Augusto Pereira Xavier, Luís Carlos Leva Borduchi, Paulino Ribeiro Villas-Boas, and Débora Marcondes Bastos Pereira Milori
J. Opt. Soc. Am. B 40(5) 1319-1330 (2023)

Nondestructive determination of SSC in an apple by using a portable near-infrared spectroscopy system

Yizhe Zhang, Jipeng Huang, Qiulei Zhang, Jinwei Liu, Yanli Meng, and Yan Yu
Appl. Opt. 61(12) 3419-3428 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.