Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 15,
  • Issue 6,
  • pp. 379-386
  • (2007)

Monitoring Chemical Changes for Stored Sawdust from Pine and Spruce Using Gas Chromatography-Mass Spectrometry and Visible-Near Infrared Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Fuel pellets that are very often made of sawdust represent a renewable energy source for heat production and there is a growing interest in these products in a large part of the world. Raw material production in the sawmills and use of sawdust in the pellet mills are out of phase during a large part of the year and for reasons of logistics there is a need for storage of large quantities of the raw material. Long-term storage changes the sawdust and, therefore, processing parameters have to be adapted, making some knowledge of storage time or maturity necessary. An experiment on the industrial storage of pine and spruce sawdust was carried out over a period of 16 weeks. Samples were taken out every week and all samples were analysed by visible-near infrared (vis-NIR) spectroscopy, while some samples were analysed by GC/MS for their composition of fatty- and resin acids. The resulting data were subjected to multivariate data analysis. GC/MS data showed the difference between pine and spruce sawdust and the influence of maturity. This maturity effect could be associated with the decrease in fatty- and resin acids due to auto-oxidative reactions. The first six weeks of storage had no influence on the concentration of fatty- and resin acids. Most of the changes in the amount of fatty- and resin acids occurred in the fresh pine sawdust during weeks six to 12. Since the spruce sawdust had less initial amounts of fatty- and resin acids, the changes were less in absolute terms but the fractional changes were similar to pine. During weeks 13 to 17 the fatty- and resin acids content had stabilised and changes were marginal. Multivariate analysis of the vis-NIR data showed a major effect due to maturity associated with a colour change and also weaker effects of fatty- and resin acid differences. PLS regression was used to predict the storage time with RMSEP values between 10 and 15 days. However, since weather conditions, precipitation and seasonal variation, have a very strong influence on the rate of maturing of sawdust it will be necessary to monitor the stored sawdust to determine the degree of maturity. Because of the large flow rate human eye assessment should be replaced by frequent vis-NIR measurements. The vis-NIR spectra allow prediction of storage time and therefore maturity.

© 2007 IM Publications LLP

PDF Article
More Like This
Optical system for tablet variety discrimination using visible/near-infrared spectroscopy

Yongni Shao, Yong He, and Xingyue Hu
Appl. Opt. 46(34) 8379-8384 (2007)

Classification of the reflectance spectra of pine, spruce, and birch

T. Jaaskelainen, R. Silvennoinen, J. Hiltunen, and J. P. S. Parkkinen
Appl. Opt. 33(12) 2356-2362 (1994)

Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

Yongni Shao, Yong He, and Jingyuan Mao
Appl. Opt. 46(25) 6391-6396 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.