Abstract

We successfully demonstrate ultrafast uni-traveling carrier photodiodes (PD) with sub-terahertz bandwidth (∼170 GHz) and high-power performance under zero bias and at 1.55-μm optical wavelength operation. By using a type-II (GaAs0.5Sb0.5/InP) absorption-collector interface and inserting an n-type (1 × 1018 cm−3) charge layer in the collector, the current blocking (Kirk) effect can be greatly minimized. A stack of undoped AlxIn0.52Ga0.48−xAs layers with different Aluminum mole fractions (x: 0.2 to 0.08) and bandgaps is adopted as the collector layer. This graded-bandgap design can provide a built-in electric field and further shorten the internal collector transit time. The demonstrated PD structure achieves a 3-dB optical-to-electrical bandwidth of 170 GHz and subterahertz output power −11.3 dBm at 170 GHz, a record among all the reported zero-bias PDs.

© 2016 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription