Abstract

A novel backside-illuminated mesa-structure dual-drifting layer (DDL) uni-traveling-carrier photodiode (UTC-PD) is reported to demonstrate high-power performance at sub-THz frequencies. The DDL structure consists of a velocity overshoot layer and a velocity saturation layer, formed by inserting a 20 nm p-type cliff layer into the thick depletion region. In the overshoot layer, photo-generated electrons drift at overshoot velocity under the carefully designed electric field profile, thus resulting in a short electron transit time. The saturation layer serves as a voltage sacrificing layer to enable high bias voltage operation, which leads to alleviated load voltage swing effect, as well as improved saturation performance. Our DDL UTC-PD exhibits a 3-dB bandwidth of 106 GHz with a responsivity of 0.17 A/W under a wide bias voltage range from 4 to 8 V. The photocurrent reaches up to 28 mA, corresponding to an output power of 7.3 dBm at 105 GHz.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of broadband and high-output power uni-traveling-carrier photodiodes

Rong Zhang, Bouchaib Hraimel, Xue Li, Peng Zhang, and Xiupu Zhang
Opt. Express 21(6) 6943-6954 (2013)

Triple transit region photodiodes (TTR-PDs) providing high millimeter wave output power

Vitaly Rymanov, Andreas Stöhr, Sebastian Dülme, and Tolga Tekin
Opt. Express 22(7) 7550-7558 (2014)

Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model

Jin Li, Bing Xiong, Changzheng Sun, Di Miao, and Yi Luo
Opt. Express 23(17) 21615-21623 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
    [Crossref]
  4. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  5. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
    [Crossref]
  6. J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
    [Crossref]
  7. X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
    [Crossref]
  8. T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
    [Crossref]
  9. A. Beling, A.-S. Cross, M. Piels, J. Peters, Q. Zhou, J.-E. Bowers, and J. C. Campbell, “InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation,” Opt. Express 21(22), 25901–25906 (2013).
    [Crossref] [PubMed]
  10. Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
    [Crossref]
  11. J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
    [Crossref]
  12. J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.
  13. T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
    [Crossref]
  14. T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
    [Crossref]
  15. J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
    [Crossref] [PubMed]
  16. Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J.-E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19(26), B385–B390 (2011).
    [Crossref] [PubMed]
  17. J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
    [Crossref]

2015 (2)

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
[Crossref] [PubMed]

2013 (3)

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

A. Beling, A.-S. Cross, M. Piels, J. Peters, Q. Zhou, J.-E. Bowers, and J. C. Campbell, “InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation,” Opt. Express 21(22), 25901–25906 (2013).
[Crossref] [PubMed]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

2012 (1)

J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

2011 (2)

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J.-E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19(26), B385–B390 (2011).
[Crossref] [PubMed]

2010 (1)

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

2009 (2)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2008 (1)

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
[Crossref]

2007 (2)

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

1983 (1)

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

1977 (1)

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Beling, A.

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Bowers, J.-E.

Campbell, J. C.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chang, C. L.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Chen, Ch. Y.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Chen, H.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Chyi, J.-I.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Cook, L. W.

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Cross, A.-S.

Duan, N.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Frey, J.

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

Fu, Y.

Haase, M. A.

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Han, Y.-J.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Hao, Z.-B.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Huang, C.-B.

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

Ishibashi, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

Ito, H.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kuo, F.-M.

J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, H.-T.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Li, J.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
[Crossref] [PubMed]

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Li, Z.

Liu, Ch.-Y.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Luo, Y.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
[Crossref] [PubMed]

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Maloney, T. J.

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

Miao, D.

Nagatsuma, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Pan, C.-L.

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

Pan, H.

Peters, J.

Piels, M.

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Shi, J.-W.

J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
[Crossref]

Shi, T.

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

Stillman, G. E.

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Sun, C.

Sun, C.-Z.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Wang, J.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Wang, L.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Wang, X.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Windhorn, T. H.

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Wu, C.-J.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Wu, Y.-S.

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
[Crossref]

Xiong, B.

J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
[Crossref] [PubMed]

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Yao, J.

Zhou, Q.

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Appl. Phys. Lett. (1)

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Chin. Phys. B (1)

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (4)

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
[Crossref]

J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

J. Appl. Phys. (1)

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

Nat. Photonics (2)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

NPG Asia Mater. (1)

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

Opt. Express (3)

Other (1)

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Epitaxial layer structure and (b) energy band diagram of the reverse biased DDL UTC-PD.
Fig. 2
Fig. 2 Electric field profiles within (a) UTC-PD and (b) DDL UTC-PD under different reverse biases.
Fig. 3
Fig. 3 (a) Schematic view and (b) I-V curves of the 6-μm diameter DDL UTC-PD.
Fig. 4
Fig. 4 (a) Bias dependent frequency response at a photocurrent of 10 mA. Measured data are depicted by open squares and circles, whereas fitted ones are given by solid lines. (b) 3-dB bandwidth of the device at a photocurrent of 10 mA under different reverse biases.
Fig. 5
Fig. 5 Output RF power versus dc photocurrent of the 6-μm diameter DDL UTC-PD at 105 GHz under different reverse biases.
Fig. 6
Fig. 6 (a): Equivalent circuit model of the DDL UTC-PD [15]. (b) Smith chart: The measured and simulated S22 parameter of the device under 6V reverse bias when the photocurrent is 10 mA.
Fig. 7
Fig. 7 Transit time and average drifting velocity of electron in the DDL UTC-PD at a photocurrent of 10 mA under different reverse biases.

Metrics