Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 14,
  • Issue 5,
  • pp. 052201-052201
  • (2016)

Parallel fabrication of silicon concave microlens array by femtosecond laser irradiation and mixed acid etching

Not Accessible

Your library or personal account may give you access

Abstract

A method of multi-beam femtosecond laser irradiation combined with modified HF-HNO3-CH3COOH etching is used for the parallel fabrication of all-silicon plano-concave microlens arrays (MLAs). The laser beam is split by a diffractive optical element and focused by a lens to drill microholes parallely on silicon. An HF-HNO3-H2SO4-CH3COOH solution is used to expand and polish laser-ablated microholes to form microlenses. Compared with the HF-HNO3-CH3COOH solution, the solution with H2SO4 can effectively reduce the etched surface roughness. The morphologies of MLAs at different laser powers and pulse numbers are observed. The image array formed by the silicon microlenses is also demonstrated.

© 2016 Chinese Laser Press

PDF Article
More Like This
Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching

An Pan, Bo Gao, Tao Chen, Jinhai Si, Cunxia Li, Feng Chen, and Xun Hou
Opt. Express 22(12) 15245-15250 (2014)

Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining

Zefang Deng, Qing Yang, Feng Chen, Xiangwei Meng, Hao Bian, Jiale Yong, Chao Shan, and Xun Hou
Opt. Lett. 40(9) 1928-1931 (2015)

Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method

Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou
Opt. Express 18(19) 20334-20343 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.