Abstract

Reduced graphene oxide (rGO) decorated with silver nanoparticles (Ag NPs) is synthesized by femtosecond laser ablation in solution method. The nonlinear optical properties of both rGO and Ag NPs/rGO are measured using a femtosecond laser Z-scan technique. The results reveal that both the nonlinear absorption and nonlinear refraction in the hybrid are enhanced due to the interaction of the energy state of Ag NPs. The composite shows a saturation intensity 18.5 MW/cm2 and boosts the nonlinear refraction as large as 2~3 times of that of rGO reaching to −1.1 × 10−12 m2/W. The enhancement of the saturable absorption might be caused by the further bleaching the valence band of rGO due to the transfer of the light excited carriers from graphene to the metal state of the NPs. The slow relaxation of the excited carriers to the ground state of rGO will also cause the increase of the carrier density and thereby result in the enhancement of the nonlinear refractive index of the material.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical nonlinearity of silver-decorated graphene

Basanth S. Kalanoor, Prem B. Bisht, S. Akbar Ali, Tessy T. Baby, and S. Ramaprabhu
J. Opt. Soc. Am. B 29(4) 669-675 (2012)

Enhanced nonlinear optical response of graphene by silver-based nanoparticle modification for pulsed lasing

Ziqi Li, Ningning Dong, Chen Cheng, Linlin Xu, Ming Chen, Jun Wang, and Feng Chen
Opt. Mater. Express 8(5) 1368-1377 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Dahal and M. Batzill, “Graphene-nickel interfaces: a review,” Nanoscale 6(5), 2548–2562 (2014).
    [Crossref] [PubMed]
  2. D. Zhang, M. Lau, S. Lu, S. Barcikowski, and B. Gökce, “Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects,” Sci. Rep. 7, 40355 (2017).
    [Crossref] [PubMed]
  3. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  4. N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris, “Fluoro-graphene: nonlinear optical properties,” Opt. Express 21(18), 21027–21038 (2013).
    [Crossref] [PubMed]
  5. H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
    [Crossref] [PubMed]
  6. J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
    [Crossref]
  7. M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(23), 3669–3676 (2013).
    [Crossref]
  8. T. V. Thu, P. J. Ko, N. H. Phuc, and A. Sandhu, “Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids,” J. Nanopart. Res. 15(10), 1975 (2013).
    [Crossref]
  9. B. S. Kalanoor, P. B. Bisht, S. A. Ali, T. T. Baby, and S. Ramaprabhu, “Optical nonlinearity of silver-decorated graphene,” J. Opt. Soc. Am. B 29(4), 669–675 (2012).
    [Crossref]
  10. B. Anand, A. Kaniyoor, S. S. S. Sai, R. Philip, and S. Ramaprabhu, “Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids,” J. Meter. Chem. C 1(15), 2773–2780 (2013).
    [Crossref]
  11. C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
    [Crossref]
  12. L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
    [Crossref] [PubMed]
  13. V. Nguyen, L. Yan, H. Xu, and M. Yue, “One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing,” Appl. Surf. Sci. 427, 1118–1123 (2018).
    [Crossref]
  14. D. Tan, X. Liu, Y. Dai, G. Ma, M. Meunier, and J. Qiu, “A Universal Photochemical Approach to Ultra‐Small, Well‐Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties,” Adv. Opt. Mater. 3(6), 836–841 (2015).
    [Crossref]
  15. D. Werner and S. Hashimoto, “Controlling the pulsed-laser-induced size reduction of Au and Ag nanoparticles via changes in the external pressure, laser intensity, and excitation wavelength,” Langmuir 29(4), 1295–1302 (2013).
    [Crossref] [PubMed]
  16. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  17. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
    [Crossref] [PubMed]
  18. Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
    [Crossref]
  19. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
    [Crossref]
  20. H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. Redfern, and G. Yang, “Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction,” Opt. Express 22(16), 19375–19385 (2014).
    [Crossref] [PubMed]
  21. G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
    [Crossref] [PubMed]
  22. P. Aloukos, I. Papagiannouli, A. B. Bourlinos, R. Zboril, and S. Couris, “Third-order nonlinear optical response and optical limiting of colloidal carbon dots,” Opt. Express 22(10), 12013–12027 (2014).
    [Crossref] [PubMed]
  23. X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
    [Crossref] [PubMed]
  24. K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1), 70–75 (2010).
    [Crossref]
  25. S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
    [Crossref]
  26. Y. Fan, Z. Jiang, and L. Yao, “Two-photon absorption of monolayer graphene suspensions in femtosecond regime,” Chin. Opt. Lett. 10(7), 071901 (2012).
    [Crossref]
  27. M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC. Adv. 6(94), 91083–91092 (2016).

2018 (1)

V. Nguyen, L. Yan, H. Xu, and M. Yue, “One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing,” Appl. Surf. Sci. 427, 1118–1123 (2018).
[Crossref]

2017 (1)

D. Zhang, M. Lau, S. Lu, S. Barcikowski, and B. Gökce, “Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects,” Sci. Rep. 7, 40355 (2017).
[Crossref] [PubMed]

2016 (1)

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC. Adv. 6(94), 91083–91092 (2016).

2015 (1)

D. Tan, X. Liu, Y. Dai, G. Ma, M. Meunier, and J. Qiu, “A Universal Photochemical Approach to Ultra‐Small, Well‐Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties,” Adv. Opt. Mater. 3(6), 836–841 (2015).
[Crossref]

2014 (3)

2013 (6)

N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris, “Fluoro-graphene: nonlinear optical properties,” Opt. Express 21(18), 21027–21038 (2013).
[Crossref] [PubMed]

D. Werner and S. Hashimoto, “Controlling the pulsed-laser-induced size reduction of Au and Ag nanoparticles via changes in the external pressure, laser intensity, and excitation wavelength,” Langmuir 29(4), 1295–1302 (2013).
[Crossref] [PubMed]

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(23), 3669–3676 (2013).
[Crossref]

T. V. Thu, P. J. Ko, N. H. Phuc, and A. Sandhu, “Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids,” J. Nanopart. Res. 15(10), 1975 (2013).
[Crossref]

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
[Crossref]

B. Anand, A. Kaniyoor, S. S. S. Sai, R. Philip, and S. Ramaprabhu, “Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids,” J. Meter. Chem. C 1(15), 2773–2780 (2013).
[Crossref]

2012 (3)

2011 (1)

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

2010 (2)

H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
[Crossref] [PubMed]

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1), 70–75 (2010).
[Crossref]

2009 (3)

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
[Crossref]

2008 (3)

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref] [PubMed]

L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
[Crossref] [PubMed]

2006 (1)

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Ali, S. A.

Aloukos, P.

Anand, B.

B. Anand, A. Kaniyoor, S. S. S. Sai, R. Philip, and S. Ramaprabhu, “Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids,” J. Meter. Chem. C 1(15), 2773–2780 (2013).
[Crossref]

Anija, M.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Baby, T. T.

Barcikowski, S.

D. Zhang, M. Lau, S. Lu, S. Barcikowski, and B. Gökce, “Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects,” Sci. Rep. 7, 40355 (2017).
[Crossref] [PubMed]

Batzill, M.

A. Dahal and M. Batzill, “Graphene-nickel interfaces: a review,” Nanoscale 6(5), 2548–2562 (2014).
[Crossref] [PubMed]

Bisht, P. B.

Blau, W. J.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Bourlinos, A. B.

Chang, H.

H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
[Crossref] [PubMed]

Chen, F.

C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
[Crossref]

Chen, T.

C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
[Crossref]

Chen, X.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Chen, Y.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Couris, S.

Dahal, A.

A. Dahal and M. Batzill, “Graphene-nickel interfaces: a review,” Nanoscale 6(5), 2548–2562 (2014).
[Crossref] [PubMed]

Dai, Y.

D. Tan, X. Liu, Y. Dai, G. Ma, M. Meunier, and J. Qiu, “A Universal Photochemical Approach to Ultra‐Small, Well‐Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties,” Adv. Opt. Mater. 3(6), 836–841 (2015).
[Crossref]

Ding, F.

H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
[Crossref] [PubMed]

Dong, N.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
[Crossref]

Fan, Y.

Geim, A. K.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Girisun, T. S.

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC. Adv. 6(94), 91083–91092 (2016).

Gökce, B.

D. Zhang, M. Lau, S. Lu, S. Barcikowski, and B. Gökce, “Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects,” Sci. Rep. 7, 40355 (2017).
[Crossref] [PubMed]

Gopinath, P.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(23), 3669–3676 (2013).
[Crossref]

Guinea, F.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hashimoto, S.

D. Werner and S. Hashimoto, “Controlling the pulsed-laser-induced size reduction of Au and Ag nanoparticles via changes in the external pressure, laser intensity, and excitation wavelength,” Langmuir 29(4), 1295–1302 (2013).
[Crossref] [PubMed]

Hou, X.

C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
[Crossref]

L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
[Crossref] [PubMed]

Jiang, X. F.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Jiang, Z.

Jin, K.

John, H.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(23), 3669–3676 (2013).
[Crossref]

Kalanoor, B. S.

Kamaraju, N.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Kamat, P. V.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Kaniyoor, A.

B. Anand, A. Kaniyoor, S. S. S. Sai, R. Philip, and S. Ramaprabhu, “Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids,” J. Meter. Chem. C 1(15), 2773–2780 (2013).
[Crossref]

Kavitha, M. K.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(23), 3669–3676 (2013).
[Crossref]

Ko, P. J.

T. V. Thu, P. J. Ko, N. H. Phuc, and A. Sandhu, “Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids,” J. Nanopart. Res. 15(10), 1975 (2013).
[Crossref]

König, D.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
[Crossref]

Kumar, S.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Lau, M.

D. Zhang, M. Lau, S. Lu, S. Barcikowski, and B. Gökce, “Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects,” Sci. Rep. 7, 40355 (2017).
[Crossref] [PubMed]

Li, A.

C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
[Crossref]

Li, C.

C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
[Crossref]

Li, Y.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Liaros, N.

Liu, X.

D. Tan, X. Liu, Y. Dai, G. Ma, M. Meunier, and J. Qiu, “A Universal Photochemical Approach to Ultra‐Small, Well‐Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties,” Adv. Opt. Mater. 3(6), 836–841 (2015).
[Crossref]

Lu, S.

D. Zhang, M. Lau, S. Lu, S. Barcikowski, and B. Gökce, “Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects,” Sci. Rep. 7, 40355 (2017).
[Crossref] [PubMed]

Ma, G.

D. Tan, X. Liu, Y. Dai, G. Ma, M. Meunier, and J. Qiu, “A Universal Photochemical Approach to Ultra‐Small, Well‐Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties,” Adv. Opt. Mater. 3(6), 836–841 (2015).
[Crossref]

Manna, A. K.

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1), 70–75 (2010).
[Crossref]

Martínez-Alonso, A.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref] [PubMed]

Meunier, M.

D. Tan, X. Liu, Y. Dai, G. Ma, M. Meunier, and J. Qiu, “A Universal Photochemical Approach to Ultra‐Small, Well‐Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties,” Adv. Opt. Mater. 3(6), 836–841 (2015).
[Crossref]

Muhler, M.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
[Crossref]

Nagaiah, T. C.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
[Crossref]

Neo, S. T.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Neto, A. C.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Nguyen, S. T.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Nguyen, V.

V. Nguyen, L. Yan, H. Xu, and M. Yue, “One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing,” Appl. Surf. Sci. 427, 1118–1123 (2018).
[Crossref]

Novoselov, K. S.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Papagiannouli, I.

Paredes, J. I.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref] [PubMed]

Pati, S. K.

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1), 70–75 (2010).
[Crossref]

Peres, N. M.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Philip, R.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(23), 3669–3676 (2013).
[Crossref]

B. Anand, A. Kaniyoor, S. S. S. Sai, R. Philip, and S. Ramaprabhu, “Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids,” J. Meter. Chem. C 1(15), 2773–2780 (2013).
[Crossref]

Phuc, N. H.

T. V. Thu, P. J. Ko, N. H. Phuc, and A. Sandhu, “Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids,” J. Nanopart. Res. 15(10), 1975 (2013).
[Crossref]

Piner, R. D.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Polavarapu, L.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Qiu, J.

D. Tan, X. Liu, Y. Dai, G. Ma, M. Meunier, and J. Qiu, “A Universal Photochemical Approach to Ultra‐Small, Well‐Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties,” Adv. Opt. Mater. 3(6), 836–841 (2015).
[Crossref]

Ramaprabhu, S.

B. Anand, A. Kaniyoor, S. S. S. Sai, R. Philip, and S. Ramaprabhu, “Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids,” J. Meter. Chem. C 1(15), 2773–2780 (2013).
[Crossref]

B. S. Kalanoor, P. B. Bisht, S. A. Ali, T. T. Baby, and S. Ramaprabhu, “Optical nonlinearity of silver-decorated graphene,” J. Opt. Soc. Am. B 29(4), 669–675 (2012).
[Crossref]

Rao, C. N. R.

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1), 70–75 (2010).
[Crossref]

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Rao, S. V.

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC. Adv. 6(94), 91083–91092 (2016).

Redfern, S. A.

Ruoff, R. S.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Sai, S. S. S.

B. Anand, A. Kaniyoor, S. S. S. Sai, R. Philip, and S. Ramaprabhu, “Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids,” J. Meter. Chem. C 1(15), 2773–2780 (2013).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sánchez, M. D.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
[Crossref]

Sandhu, A.

T. V. Thu, P. J. Ko, N. H. Phuc, and A. Sandhu, “Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids,” J. Nanopart. Res. 15(10), 1975 (2013).
[Crossref]

Saravanan, M.

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC. Adv. 6(94), 91083–91092 (2016).

Seger, B.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shi, H.

Shi, X.

C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
[Crossref]

Si, J.

C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
[Crossref]

L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
[Crossref] [PubMed]

Sood, A. K.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Stankovich, S.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Subrahmanyam, K. S.

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1), 70–75 (2010).
[Crossref]

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Sun, Z.

H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. Redfern, and G. Yang, “Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction,” Opt. Express 22(16), 19375–19385 (2014).
[Crossref] [PubMed]

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
[Crossref]

H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
[Crossref] [PubMed]

Tan, D.

D. Tan, X. Liu, Y. Dai, G. Ma, M. Meunier, and J. Qiu, “A Universal Photochemical Approach to Ultra‐Small, Well‐Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties,” Adv. Opt. Mater. 3(6), 836–841 (2015).
[Crossref]

Tao, X.

H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
[Crossref] [PubMed]

Tascón, J. M. D.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref] [PubMed]

Thu, T. V.

T. V. Thu, P. J. Ko, N. H. Phuc, and A. Sandhu, “Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids,” J. Nanopart. Res. 15(10), 1975 (2013).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vasu, K. S.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Venkatesan, T.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Villar-Rodil, S.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref] [PubMed]

Vinitha, G.

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC. Adv. 6(94), 91083–91092 (2016).

Wang, C.

Wang, J.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Wang, K.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Werner, D.

D. Werner and S. Hashimoto, “Controlling the pulsed-laser-induced size reduction of Au and Ag nanoparticles via changes in the external pressure, laser intensity, and excitation wavelength,” Langmuir 29(4), 1295–1302 (2013).
[Crossref] [PubMed]

Williams, G.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Wu, N.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

Xu, H.

V. Nguyen, L. Yan, H. Xu, and M. Yue, “One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing,” Appl. Surf. Sci. 427, 1118–1123 (2018).
[Crossref]

Xu, Q. H.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Yan, F.

H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
[Crossref] [PubMed]

Yan, L.

V. Nguyen, L. Yan, H. Xu, and M. Yue, “One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing,” Appl. Surf. Sci. 427, 1118–1123 (2018).
[Crossref]

L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
[Crossref] [PubMed]

Yang, G.

Yao, L.

Yuan, Q.

H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
[Crossref] [PubMed]

Yue, J.

Yue, M.

V. Nguyen, L. Yan, H. Xu, and M. Yue, “One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing,” Appl. Surf. Sci. 427, 1118–1123 (2018).
[Crossref]

Zboril, R.

Zhang, B.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Zhang, D.

D. Zhang, M. Lau, S. Lu, S. Barcikowski, and B. Gökce, “Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects,” Sci. Rep. 7, 40355 (2017).
[Crossref] [PubMed]

Zhang, J.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Zheng, Z.

H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
[Crossref] [PubMed]

Zhou, Y.

Zhu, J.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

ACS Nano (1)

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, “Thin Film Field-Effect Phototransistors from Bandgap-Tunable, Solution-Processed, Few-Layer Reduced Graphene Oxide Films,” Adv. Mater. 22(43), 4872–4876 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

D. Tan, X. Liu, Y. Dai, G. Ma, M. Meunier, and J. Qiu, “A Universal Photochemical Approach to Ultra‐Small, Well‐Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties,” Adv. Opt. Mater. 3(6), 836–841 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Appl. Surf. Sci. (1)

V. Nguyen, L. Yan, H. Xu, and M. Yue, “One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing,” Appl. Surf. Sci. 427, 1118–1123 (2018).
[Crossref]

Carbon (2)

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62, 182–192 (2013).
[Crossref]

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Chem. Phys. Lett. (1)

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1), 70–75 (2010).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Mater. Chem. (1)

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” J. Mater. Chem. 16(2), 155–158 (2006).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(23), 3669–3676 (2013).
[Crossref]

J. Meter. Chem. C (1)

B. Anand, A. Kaniyoor, S. S. S. Sai, R. Philip, and S. Ramaprabhu, “Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids,” J. Meter. Chem. C 1(15), 2773–2780 (2013).
[Crossref]

J. Nanopart. Res. (1)

T. V. Thu, P. J. Ko, N. H. Phuc, and A. Sandhu, “Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids,” J. Nanopart. Res. 15(10), 1975 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref] [PubMed]

Langmuir (2)

D. Werner and S. Hashimoto, “Controlling the pulsed-laser-induced size reduction of Au and Ag nanoparticles via changes in the external pressure, laser intensity, and excitation wavelength,” Langmuir 29(4), 1295–1302 (2013).
[Crossref] [PubMed]

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref] [PubMed]

Nanoscale (1)

A. Dahal and M. Batzill, “Graphene-nickel interfaces: a review,” Nanoscale 6(5), 2548–2562 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Li, X. Shi, J. Si, T. Chen, F. Chen, A. Li, and X. Hou, “Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses,” Opt. Commun. 282(4), 657–660 (2009).
[Crossref]

Opt. Express (4)

Rev. Mod. Phys. (1)

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

RSC. Adv. (1)

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC. Adv. 6(94), 91083–91092 (2016).

Sci. Rep. (1)

D. Zhang, M. Lau, S. Lu, S. Barcikowski, and B. Gökce, “Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects,” Sci. Rep. 7, 40355 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) UV-Vis absorption spectra of the GO, rGO and Ag NPs/rGO. (b) TEM images of Ag NPs/rGO. (c) The size distribution of Ag NPs. and (b) HRTEM images of Ag NPs.
Fig. 2
Fig. 2 XPS spectra of (a) GO and (b) Ag NPs/rGO.
Fig. 3
Fig. 3 (a) OA Z-scan measurement results of rGO and Ag NPs/rGO when the laser power was fixed at 72 MW/cm2. (b) Normalized transmission as a function of input laser intensity for rGO and Ag NPs/rGO.
Fig. 4
Fig. 4 Z-scan trace of rGO and Ag NPs/rGO resulting from the division of the CA data by the OA data. The theoretical fittings are indicated as solid lines.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = 1 π β I 0 L e f f / ( 1 + z 2 / z R 2 ) + ln [ 1 + β I 0 L e f f ( 1 + z 2 / z R 2 ) exp ( t 2 ) ] d t
T L = 1 α 0
T N L = 1 α 0 / ( 1 + I / I s )
T ( x ) = 1 + 4 x Δ Φ ( 1 + x 2 ) ( 9 + x 2 )

Metrics