Abstract

Reduced graphene oxide (rGO) decorated with silver nanoparticles exhibits an enhanced nonlinear absorption effect compared with pure rGO. Using femtosecond time-resolved transient absorption spectroscopy, the enhancement mechanism and carrier dynamics of the composites are experimentally demonstrated. When the material is excited by laser pulses, the excited carriers in the conduction band of graphene will transfer to the d-band of silver before returning to the valence band. As the decay process (∼210 ps) is much longer than that of the relaxation time in pure graphene (∼fs), the bleaching effect of valence band is prolonged, resulting in enhanced saturable absorption effect.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced nonlinear optical properties of reduced graphene oxide decorated with silver nanoparticles

Mengmeng Yue, Jinhai Si, Lihe Yan, Yang Yu, and Xun Hou
Opt. Mater. Express 8(3) 698-703 (2018)

Optical nonlinearity of silver-decorated graphene

Basanth S. Kalanoor, Prem B. Bisht, S. Akbar Ali, Tessy T. Baby, and S. Ramaprabhu
J. Opt. Soc. Am. B 29(4) 669-675 (2012)

Laser-induced electrical signal filtering by multilayer reduced graphene oxide decorated with Au nanoparticles

E. Jiménez-Marín, J. Moreno-Valenzuela, M. Trejo-Valdez, A. Martinez-Rivas, J. R. Vargas-García, and C. Torres-Torres
Opt. Express 27(5) 7330-7343 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
    [Crossref]
  2. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nat. Mater. 14(3), 271–279 (2015).
    [Crossref]
  3. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
    [Crossref]
  4. N. Dong, Y. Li, S. Zhang, X. Zhang, and J. Wang, “Optically Induced Transparency and Extinction in Dispersed MoS2, MoSe2, and Graphene Nanosheets,” Adv. Opt. Mater. 5(19), 1700543 (2017).
    [Crossref]
  5. N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris, “Fluoro-graphene: nonlinear optical properties,” Opt. Express 21(18), 21027–21038 (2013).
    [Crossref]
  6. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  7. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
    [Crossref]
  8. D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
    [Crossref]
  9. J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
    [Crossref]
  10. M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1(23), 3669–3676 (2013).
    [Crossref]
  11. K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
    [Crossref]
  12. I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
    [Crossref]
  13. M. Yue, J. Si, L. Yan, Y. Yu, and X. Hou, “Enhanced nonlinear optical properties of reduced graphene oxide decorated with silver nanoparticles,” Opt. Mater. Express 8(3), 698–703 (2018).
    [Crossref]
  14. S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
    [Crossref]
  15. H. Wang, Z. Zhou, and H. Tian, “Effect of light intensity on reflectance and transmittance of a laser beam incident on a gold film,” Opt. Laser Eng. 48(6), 703–706 (2010).
    [Crossref]
  16. X. Zhang, C. Huang, M. Wang, P. Huang, X. He, and Z. Wei, “Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles,” Sci. Rep. 8(1), 10499 (2018).
    [Crossref]
  17. M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
    [Crossref]
  18. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
    [Crossref]
  19. Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
    [Crossref]
  20. X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, “Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 3(8), 2944–2952 (2011).
    [Crossref]
  21. J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
    [Crossref]
  22. J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
    [Crossref]
  23. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman Spectroscopy in Graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
    [Crossref]
  24. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  25. P. Aloukos, I. Papagiannouli, A. B. Bourlinos, R. Zboril, and S. Couris, “Third-order nonlinear optical response and optical limiting of colloidal carbon dots,” Opt. Express 22(10), 12013–12027 (2014).
    [Crossref]
  26. B. S. Kalanoor, P. B. Bisht, S. A. Ali, T. T. Baby, and S. Ramaprabhu, “Optical nonlinearity of silver-decorated graphene,” J. Opt. Soc. Am. B 29(4), 669–675 (2012).
    [Crossref]
  27. X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
    [Crossref]

2019 (1)

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

2018 (3)

M. Yue, J. Si, L. Yan, Y. Yu, and X. Hou, “Enhanced nonlinear optical properties of reduced graphene oxide decorated with silver nanoparticles,” Opt. Mater. Express 8(3), 698–703 (2018).
[Crossref]

X. Zhang, C. Huang, M. Wang, P. Huang, X. He, and Z. Wei, “Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles,” Sci. Rep. 8(1), 10499 (2018).
[Crossref]

M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
[Crossref]

2017 (2)

N. Dong, Y. Li, S. Zhang, X. Zhang, and J. Wang, “Optically Induced Transparency and Extinction in Dispersed MoS2, MoSe2, and Graphene Nanosheets,” Adv. Opt. Mater. 5(19), 1700543 (2017).
[Crossref]

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

2016 (1)

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

2015 (2)

R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nat. Mater. 14(3), 271–279 (2015).
[Crossref]

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

2014 (1)

2013 (4)

N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris, “Fluoro-graphene: nonlinear optical properties,” Opt. Express 21(18), 21027–21038 (2013).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
[Crossref]

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1(23), 3669–3676 (2013).
[Crossref]

2012 (4)

X. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

B. S. Kalanoor, P. B. Bisht, S. A. Ali, T. T. Baby, and S. Ramaprabhu, “Optical nonlinearity of silver-decorated graphene,” J. Opt. Soc. Am. B 29(4), 669–675 (2012).
[Crossref]

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
[Crossref]

2011 (2)

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, “Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 3(8), 2944–2952 (2011).
[Crossref]

2010 (2)

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

H. Wang, Z. Zhou, and H. Tian, “Effect of light intensity on reflectance and transmittance of a laser beam incident on a gold film,” Opt. Laser Eng. 48(6), 703–706 (2010).
[Crossref]

2009 (3)

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman Spectroscopy in Graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2008 (1)

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Ai, K.

X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, “Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 3(8), 2944–2952 (2011).
[Crossref]

Ali, S. A.

Aloukos, P.

Anija, M.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Baby, T. T.

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Bisht, P. B.

Blau, W. J.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

Bourlinos, A. B.

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

P. Aloukos, I. Papagiannouli, A. B. Bourlinos, R. Zboril, and S. Couris, “Third-order nonlinear optical response and optical limiting of colloidal carbon dots,” Opt. Express 22(10), 12013–12027 (2014).
[Crossref]

N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris, “Fluoro-graphene: nonlinear optical properties,” Opt. Express 21(18), 21027–21038 (2013).
[Crossref]

Cao, L.

X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, “Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 3(8), 2944–2952 (2011).
[Crossref]

Chang, X.

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

Chen, B.

J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
[Crossref]

Chen, Y.

M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
[Crossref]

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Colombo, L.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

Couris, S.

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

P. Aloukos, I. Papagiannouli, A. B. Bourlinos, R. Zboril, and S. Couris, “Third-order nonlinear optical response and optical limiting of colloidal carbon dots,” Opt. Express 22(10), 12013–12027 (2014).
[Crossref]

N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris, “Fluoro-graphene: nonlinear optical properties,” Opt. Express 21(18), 21027–21038 (2013).
[Crossref]

Dong, L.

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

Dong, N.

M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
[Crossref]

N. Dong, Y. Li, S. Zhang, X. Zhang, and J. Wang, “Optically Induced Transparency and Extinction in Dispersed MoS2, MoSe2, and Graphene Nanosheets,” Adv. Opt. Mater. 5(19), 1700543 (2017).
[Crossref]

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
[Crossref]

Dresselhaus, G.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman Spectroscopy in Graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Dresselhaus, M. S.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman Spectroscopy in Graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Du, C.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Feng, S.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Feng, W.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

Gan, F.

M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
[Crossref]

Gopinath, P.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1(23), 3669–3676 (2013).
[Crossref]

Gu, D.

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

He, X.

X. Zhang, C. Huang, M. Wang, P. Huang, X. He, and Z. Wei, “Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles,” Sci. Rep. 8(1), 10499 (2018).
[Crossref]

Hou, X.

Huang, C.

X. Zhang, C. Huang, M. Wang, P. Huang, X. He, and Z. Wei, “Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles,” Sci. Rep. 8(1), 10499 (2018).
[Crossref]

Huang, J.

J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
[Crossref]

Huang, P.

X. Zhang, C. Huang, M. Wang, P. Huang, X. He, and Z. Wei, “Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles,” Sci. Rep. 8(1), 10499 (2018).
[Crossref]

Huang, S.

M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
[Crossref]

Jiang, X.

X. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Jiang, X. F.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

John, H.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1(23), 3669–3676 (2013).
[Crossref]

Kalanoor, B. S.

Kamaraju, N.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Kavitha, M. K.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1(23), 3669–3676 (2013).
[Crossref]

König, D.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
[Crossref]

Kumar, S.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Kyrginas, D.

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

Li, X.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Li, Y.

N. Dong, Y. Li, S. Zhang, X. Zhang, and J. Wang, “Optically Induced Transparency and Extinction in Dispersed MoS2, MoSe2, and Graphene Nanosheets,” Adv. Opt. Mater. 5(19), 1700543 (2017).
[Crossref]

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Li, Z.

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

Liaros, N.

Liu, M.

J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
[Crossref]

Liu, T.

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

Liu, X.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, “Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 3(8), 2944–2952 (2011).
[Crossref]

Liu, Z.

M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lu, L.

X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, “Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 3(8), 2944–2952 (2011).
[Crossref]

Lu, S.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Luo, S.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Malard, L. M.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman Spectroscopy in Graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Manna, A. K.

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Martínez-Alonso, A.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Muhler, M.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
[Crossref]

Nagaiah, T. C.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
[Crossref]

Neo, S. T.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

X. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Otyepka, M.

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

Papadakis, I.

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

Papagiannouli, I.

Paredes, J. I.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Passerini, S.

R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nat. Mater. 14(3), 271–279 (2015).
[Crossref]

Pati, S. K.

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

Pellegrini, V.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

Philip, R.

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1(23), 3669–3676 (2013).
[Crossref]

Pimenta, M. A.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman Spectroscopy in Graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Polavarapu, L.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

X. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Potsi, G.

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

Raccichini, R.

R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nat. Mater. 14(3), 271–279 (2015).
[Crossref]

Ramaprabhu, S.

Rao, C. N. R.

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Ren, B.

J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
[Crossref]

Ruoff, R. S.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sánchez, M. D.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
[Crossref]

Scrosati, B.

R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nat. Mater. 14(3), 271–279 (2015).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, H.

J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
[Crossref]

Shen, J.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shi, H.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Shi, M.

M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
[Crossref]

Si, J.

Song, W.

X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, “Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 3(8), 2944–2952 (2011).
[Crossref]

Song, X.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Sood and, A. K.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Stathis, A.

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

Stoller, M.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

Subrahmanyam, K. S.

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Sun, S.

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

Sun, Z.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tascón, J. M. D.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Tian, H.

H. Wang, Z. Zhou, and H. Tian, “Effect of light intensity on reflectance and transmittance of a laser beam incident on a gold film,” Opt. Laser Eng. 48(6), 703–706 (2010).
[Crossref]

Tomanec, O.

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

Tozzini, V.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Varzi, A.

R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nat. Mater. 14(3), 271–279 (2015).
[Crossref]

Vasu, K. S.

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Venkatesan, T.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

X. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Villar-Rodil, S.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Wang, H.

H. Wang, Z. Zhou, and H. Tian, “Effect of light intensity on reflectance and transmittance of a laser beam incident on a gold film,” Opt. Laser Eng. 48(6), 703–706 (2010).
[Crossref]

Wang, J.

M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
[Crossref]

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

N. Dong, Y. Li, S. Zhang, X. Zhang, and J. Wang, “Optically Induced Transparency and Extinction in Dispersed MoS2, MoSe2, and Graphene Nanosheets,” Adv. Opt. Mater. 5(19), 1700543 (2017).
[Crossref]

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Wang, K.

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
[Crossref]

Wang, M.

X. Zhang, C. Huang, M. Wang, P. Huang, X. He, and Z. Wei, “Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles,” Sci. Rep. 8(1), 10499 (2018).
[Crossref]

Wang, Y.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wei, D.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wei, X.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Wei, Z.

X. Zhang, C. Huang, M. Wang, P. Huang, X. He, and Z. Wei, “Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles,” Sci. Rep. 8(1), 10499 (2018).
[Crossref]

Xu, Q.

X. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Xu, Q. H.

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Yan, L.

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yin, Y.

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

Yu, G.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

Yu, Y.

Yue, M.

Zboril, R.

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

P. Aloukos, I. Papagiannouli, A. B. Bourlinos, R. Zboril, and S. Couris, “Third-order nonlinear optical response and optical limiting of colloidal carbon dots,” Opt. Express 22(10), 12013–12027 (2014).
[Crossref]

N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris, “Fluoro-graphene: nonlinear optical properties,” Opt. Express 21(18), 21027–21038 (2013).
[Crossref]

Zhai, X.

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

Zhang, B.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Zhang, H.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, J.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Zhang, S.

N. Dong, Y. Li, S. Zhang, X. Zhang, and J. Wang, “Optically Induced Transparency and Extinction in Dispersed MoS2, MoSe2, and Graphene Nanosheets,” Adv. Opt. Mater. 5(19), 1700543 (2017).
[Crossref]

Zhang, X.

X. Zhang, C. Huang, M. Wang, P. Huang, X. He, and Z. Wei, “Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles,” Sci. Rep. 8(1), 10499 (2018).
[Crossref]

N. Dong, Y. Li, S. Zhang, X. Zhang, and J. Wang, “Optically Induced Transparency and Extinction in Dispersed MoS2, MoSe2, and Graphene Nanosheets,” Adv. Opt. Mater. 5(19), 1700543 (2017).
[Crossref]

Zhang, Z.

J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
[Crossref]

Zhou, Q.

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Zhou, Z.

H. Wang, Z. Zhou, and H. Tian, “Effect of light intensity on reflectance and transmittance of a laser beam incident on a gold film,” Opt. Laser Eng. 48(6), 703–706 (2010).
[Crossref]

Zhu, J.

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Zong, C.

J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, “Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 3(8), 2944–2952 (2011).
[Crossref]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Opt. Mater. (1)

N. Dong, Y. Li, S. Zhang, X. Zhang, and J. Wang, “Optically Induced Transparency and Extinction in Dispersed MoS2, MoSe2, and Graphene Nanosheets,” Adv. Opt. Mater. 5(19), 1700543 (2017).
[Crossref]

Appl. Phys. Lett. (1)

S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95(19), 191911 (2009).
[Crossref]

Carbon (2)

J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, “Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting,” Carbon 49(6), 1900–1905 (2011).
[Crossref]

Z. Sun, N. Dong, K. Wang, D. König, T. C. Nagaiah, M. D. Sánchez, and M. Muhler, “Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications,” Carbon 62(5), 182–192 (2013).
[Crossref]

Ceram. Int. (1)

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, “Efficient synthesis of silverreduced graphene oxide composites with prolonged antibacterial effects,” Ceram. Int. 42(8), 9769–9778 (2016).
[Crossref]

Chem. Commun. (1)

M. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, and Y. Chen, “Donor-acceptor type blends composed of black phosphorus and C-60 for solid-state optical limiters,” Chem. Commun. 54(4), 366–369 (2018).
[Crossref]

Chem. Phys. Lett. (1)

K. S. Subrahmanyam, A. K. Manna, S. K. Pati, and C. N. R. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Mater. Chem. C (1)

M. K. Kavitha, H. John, P. Gopinath, and R. Philip, “Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties,” J. Mater. Chem. C 1(23), 3669–3676 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

I. Papadakis, D. Kyrginas, A. Stathis, S. Couris, G. Potsi, A. B. Bourlinos, O. Tomanec, M. Otyepka, and R. Zboril, “Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene,” J. Phys. Chem. C 123(42), 25856–25862 (2019).
[Crossref]

J. Phys. Chem. Lett. (2)

X. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Langmuir (1)

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Nanoscale (1)

J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]

Nat. Mater. (1)

R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nat. Mater. 14(3), 271–279 (2015).
[Crossref]

Nat. Photonics (1)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Opt. Express (2)

Opt. Laser Eng. (1)

H. Wang, Z. Zhou, and H. Tian, “Effect of light intensity on reflectance and transmittance of a laser beam incident on a gold film,” Opt. Laser Eng. 48(6), 703–706 (2010).
[Crossref]

Opt. Mater. Express (1)

Phys. Rep. (1)

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman Spectroscopy in Graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Sci. Rep. (1)

X. Zhang, C. Huang, M. Wang, P. Huang, X. He, and Z. Wei, “Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles,” Sci. Rep. 8(1), 10499 (2018).
[Crossref]

Science (1)

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science 347(6217), 1246501 (2015).
[Crossref]

Small (1)

J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, and Z. Zhang, “Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy,” Small 8(16), 2577–2584 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Absorption spectra of the GO, rGO, and AgNPs/rGO, (b) TEM image of AgNPs/rGO, the insets show the HRTEM image and size distribution, (c)-(e) XPS spectra and (f) Raman spectra of GO, rGO, and AgNPs/rGO.
Fig. 2.
Fig. 2. (a) Absorption spectra, (b) TEM images, and (c) Raman spectra of samples with different Ag ion concentrations. The scale bar in the lower right corner indicates 200 nm.
Fig. 3.
Fig. 3. (a) OA Z-scan results of rGO and AgNPs/rGO. The solid lines show the fitting curves of the results. (b) The energy band diagram of the AgNPs/rGO interface.
Fig. 4.
Fig. 4. (a) TA spectra of the composites as a function of the pump and probe delay. (b) The TA of AgNPs/rGO as a function of probe wavelength at different delay times with a pump power of 10 mW; (c) TA at the wavelength of 580 nm of AgNPs/rGO as a function of probe delay time with a pump power of 10mW
Fig. 5.
Fig. 5. (a) TA of AgNPs/rGO with the pump laser power changing from 4 mW to 10 mW and a probe delay time of 100 ps. (b) The negative absorption peaks as a function of the pump laser power.

Metrics