Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

1D speckle-learned structured light recognition

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, we introduce a novel, to the best of our knowledge, structured light recognition technique based on the 1D speckle information to reduce the computational cost. Compared to the 2D speckle-based recognition [J. Opt. Soc. Am. A 39, 759 (2022) [CrossRef]  ], the proposed 1D speckle-based method utilizes only a 1D array (1×n pixels) of the structured light speckle pattern image (n × n pixels). This drastically reduces the computational cost, since the required data is reduced by a factor of 1/n. A custom-designed 1D convolutional neural network (1D-CNN) with only 2.4 k learnable parameters is trained and tested on 1D structured light speckle arrays for fast and accurate recognition. A comparative study is carried out between 2D speckle-based and 1D speckle-based array recognition techniques comparing the data size, training time, and accuracy. For a proof-of-concept for the 1D speckle-based structured light recognition, we have established a 3-bit free-space communication channel by employing structured light-shift keying. The trained 1D CNN has successfully decoded the encoded 3-bit gray image with an accuracy of 94%. Additionally, our technique demonstrates robust performance under noise variation showcasing its deployment in practical cost-effective real-world applications.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Learning-enabled data transmission with up to 32 multiplexed orbital angular momentum channels through a commercial multi-mode fiber

Jihong Tang, Yaling Yin, Jingwen Zhou, Yong Xia, and Jianping Yin
Opt. Lett. 49(8) 2189-2192 (2024)

Speckle-based structured light shift-keying for non-line-of-sight optical communication

Purnesh Singh Badavath, Venugopal Raskatla, T. Pradeep Chakravarthy, and Vijay Kumar
Appl. Opt. 62(23) G53-G59 (2023)

Global-optimal semi-supervised learning for single-pixel image-free sensing

Xinrui Zhan, Hui Lu, Rong Yan, and Liheng Bian
Opt. Lett. 49(3) 682-685 (2024)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.