Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable slow light device based on a graphene metasurface

Not Accessible

Your library or personal account may give you access

Abstract

Slow light devices have significant applications in memory, switching, and quantum optics. However, the design and fabrication of slow light devices with large tunable group delay are still challenging. Here, a graphene-based slow light device that can electrically modulate the group delay of terahertz (THz) waves is proposed and experimentally demonstrated. The unit cell of the device consists of a U-shaped metal resonator and an Ω-shaped metal resonator, with three graphene ribbons embedded between the two resonators. Under electrical stimuli, a relatively high amplitude modulation depth of 74% is achieved and the maximum transmission amplitude is as high as 0.7 at the transmission peak of 0.6 THz. Most importantly, the maximum group delay variation reaches 5 ps at 0.76 THz and the maximum group delay amplitude is as high as 8.8 ps. The experiment shows good agreement with simulation. This study paves a new way for developing novel switchable nanophotonic devices and slow light devices.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Multidimensional tunable graphene chiral metasurface based on coherent control

Wanli Zhao, Ming Chen, Xiangyang Wang, Wenhao Han, Renjie Li, Xinyu Shi, Jinbiao Liu, Chuanxin Teng, Shijie Deng, and Libo Yuan
Opt. Lett. 48(19) 5153-5156 (2023)

Graphene-based terahertz metasurface with tunable spectrum splitting

Zhaoxian Su, Xuan Chen, Jianbo Yin, and Xiaopeng Zhao
Opt. Lett. 41(16) 3799-3802 (2016)

Slow light enabled high-modulation-depth graphene modulator with plasmonic metasurfaces

Tangxuan Ren and Lin Chen
Opt. Lett. 44(22) 5446-5449 (2019)

Supplementary Material (1)

NameDescription
Supplement 1       Supplementary materials

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.