Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simultaneous ground-state cooling of multiple degenerate mechanical modes through the cross-Kerr effect

Not Accessible

Your library or personal account may give you access

Abstract

Simultaneous ground-state cooling of multiple degenerate mechanical modes is a difficult issue in optomechanical systems, owing to the existence of the dark mode effect. Here we propose a universal and scalable method to break the dark mode effect of two degenerate mechanical modes by introducing cross-Kerr (CK) nonlinearity. At most, four stable steady states can be achieved in our scheme in the presence of the CK effect, unlike the bistable behavior of the standard optomechanical system. Under a constant input laser power, the effective detuning and mechanical resonant frequency can be modulated by the CK nonlinearity, resulting in an optimal CK coupling strength for cooling. Similarly, there will be an optimal input laser power for cooling when the CK coupling strength stays fixed. Our scheme can be extended to break the dark mode effect of multiple degenerate mechanical modes by introducing more than one CK effect. To fulfill the requirement of the simultaneous ground-state cooling of N multiple degenerate mechanical modes, N − 1 CK effects with different strengths are needed. Our proposal provides new, to the best of our knowledge. insights into dark mode control and might pave the way to manipulating multiple quantum states in a macroscopic system.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Simultaneous ground-state cooling of identical mechanical oscillators by Lyapunov control

Zhen Yang, Junya Yang, Shi-Lei Chao, Chengsong Zhao, Rui Peng, and Ling Zhou
Opt. Express 30(11) 20135-20148 (2022)

Improving mechanical cooling by using magnetic thermal noise in a cavity-magnomechanical system

Zhen Yang, Chengsong Zhao, Rui Peng, Junya Yang, and Ling Zhou
Opt. Lett. 48(2) 375-378 (2023)

Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities

Jun-Ya Yang, Dong-Yang Wang, Cheng-Hua Bai, Si-Yu Guan, Xiao-Yuan Gao, Ai-Dong Zhu, and Hong-Fu Wang
Opt. Express 27(16) 22855-22867 (2019)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental document

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.