M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53 (2018).

[Crossref]
[PubMed]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191 (2017).

[Crossref]
[PubMed]

J. S. Feng, L. Tan, H. Q. Gu, and W. M. Liu, “Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime,” Phys. Rev. A 96, 063818 (2017).

[Crossref]

R. W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P. L. Yu, K. W. Lehnert, and C.A. Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit,” Phys. Rev. Lett. 116, 063601 (2016).

[Crossref]
[PubMed]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state,” Sci. China Phys. Mech. Astron. 58, 050305 (2015).

[Crossref]

Y. Yan, W. J. Gu, and G. X. Li, “Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling,” Sci. China Phys. Mech. Astron. 58, 050306 (2015).

[Crossref]

T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, “Position-squared coupling in a tunable photonic crystal optomechanical cavity,” Phys. Rev. X 5, 041024 (2015).

W. J. Gu, Z. Yi, L. H. Sun, and D. H. Xu, “Mechanical cooling in single-photon optomechanics with quadratic nonlinearity,” Phys. Rev. A 92, 023811 (2015).

[Crossref]

Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

X. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]
[PubMed]

S. Zhang, J. Q. Zhang, J. Zhang, C. W. Wu, W. Wu, and P. X. Chen, “Ground state cooling of an optomechanical resonator assisted by a Λ-type atom,” Opt. Express 22, 28118 (2014).

[Crossref]
[PubMed]

Y. Guo, K. Li, W. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).

[Crossref]

T. Ojanen and K. Børkje, “Ground state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).

[Crossref]

P. Sekatski, M. Aspelmeyer, and N. Sangouard, “Macroscopic optomechanics from displaced single-photon entanglement,” Phys. Rev. Lett. 112, 080502 (2014).

[Crossref]

T. Weiss and A. Nunnenkamp, “Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems,” Phys. Rev. A 88, 023850 (2013).

[Crossref]

M. Y. Yan, H. K. Li, Y. C. Liu, W. L. Jin, and Y. F. Xiao, “Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-Q microcavity,” Phys. Rev. A 88, 023802 (2013).

[Crossref]

H. K. Li, X. X. Ren, Y. C. Liu, and Y. F. Xiao, “Effective photon-photon interactions in largely detuned optomechanics,” Phys. Rev. A 88, 053850 (2013).

[Crossref]

J. J. Li and K. D. Li, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223 (2013).

[Crossref]

W. J. Gu and G. X. Li, “Quantum interference effects on ground-state optomechanical cooling,” Phys. Rev. A 87, 025804 (2013).

[Crossref]

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Cooling in the single-photon regime of optomechanics,” Phys. Rev. A 85, 051803 (2012).

[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6, 768 (2012).

[Crossref]

B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D. Bouwmeester, “Optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 109, 023601 (2012).

[Crossref]
[PubMed]

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29 (2012).

[Crossref]

Y. D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012).

[Crossref]
[PubMed]

Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, “A reversible optical to microwave quantum interface,” Phys. Rev. Lett. 109, 130503 (2012).

[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing an optical pulse as a mechanical excitation in a silica pptomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

[Crossref]

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects, optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 107, 020405 (2011).

[Crossref]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).

[Crossref]
[PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).

[Crossref]

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

A. A. Clerk, S. M. Girvin, and F. Marquardt, “Introduction to quantum noise, measurement, and amplification,” Rev. Mod. Phys. 82, 1155 (2010).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707 (2010).

[Crossref]

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Optomechanical cavity cooling of an atomic ensemble,” Phys. Rev. Lett. 104, 213603 (2010).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).

[Crossref]

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).

[Crossref]
[PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).

[Crossref]

F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, “Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect,” Phys. Rev. A 79, 052115 (2009).

[Crossref]

H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, “Standard quantum Limit for probing mechanical energy quantization,” Phys. Rev. Lett. 103, 100402 (2009).

[Crossref]
[PubMed]

J. D. Thompson, B. M. Zwickl, and A. M. Jayich, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

K. W. Murch, K. L. Moore, and S. Gupta, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561 (2008).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. HarrisStrong, “Strong dispersive coupling of a high finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172 (2008).

[Crossref]
[PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172 (2007).

[Crossref]
[PubMed]

F. Xue, L. Zhong, Y. Li, and C. P. Sun, “Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations,” Phys. Rev. B 75, 033407 (2007).

[Crossref]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

L. He, Y. X. Liu, S. Yi, C. P. Sun, and F. Nori, “Control of photon propagation via electromagnetically induced transparency in lossless media,” Phys. Rev. A 75, 063818 (2007).

[Crossref]

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58 (7), 36 (2005).

[Crossref]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).

[Crossref]
[PubMed]

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical cooling of a macroscopic oscillator by homodyne feedback,” Phys. Rev. Lett. 80, 688 (1998).

[Crossref]

V. V. Dodonov and S. S. Mizrahi, “Exact stationary photon distributions due to competition between one- and two-photon absorption and emission,” J. Phys. A 30, 5657 (1997).

[Crossref]

R. L. de Matos Filho and W. Vogel, “Second-sideband laser cooling and nonclassical motion of trapped ions,” Phys. Rev. A 50, R1988 (1994).

[Crossref]
[PubMed]

Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, “A reversible optical to microwave quantum interface,” Phys. Rev. Lett. 109, 130503 (2012).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).

[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

R. W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P. L. Yu, K. W. Lehnert, and C.A. Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit,” Phys. Rev. Lett. 116, 063601 (2016).

[Crossref]
[PubMed]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

P. Sekatski, M. Aspelmeyer, and N. Sangouard, “Macroscopic optomechanics from displaced single-photon entanglement,” Phys. Rev. Lett. 112, 080502 (2014).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).

[Crossref]

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29 (2012).

[Crossref]

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects, optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 107, 020405 (2011).

[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191 (2017).

[Crossref]
[PubMed]

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing an optical pulse as a mechanical excitation in a silica pptomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

[Crossref]

Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, “A reversible optical to microwave quantum interface,” Phys. Rev. Lett. 109, 130503 (2012).

[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects, optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 107, 020405 (2011).

[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6, 768 (2012).

[Crossref]

T. Ojanen and K. Børkje, “Ground state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).

[Crossref]

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Cooling in the single-photon regime of optomechanics,” Phys. Rev. A 85, 051803 (2012).

[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D. Bouwmeester, “Optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 109, 023601 (2012).

[Crossref]
[PubMed]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).

[Crossref]
[PubMed]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).

[Crossref]
[PubMed]

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53 (2018).

[Crossref]
[PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, “Standard quantum Limit for probing mechanical energy quantization,” Phys. Rev. Lett. 103, 100402 (2009).

[Crossref]
[PubMed]

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects, optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 107, 020405 (2011).

[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191 (2017).

[Crossref]
[PubMed]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

Y. D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012).

[Crossref]
[PubMed]

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Optomechanical cavity cooling of an atomic ensemble,” Phys. Rev. Lett. 104, 213603 (2010).

[Crossref]

A. A. Clerk, S. M. Girvin, and F. Marquardt, “Introduction to quantum noise, measurement, and amplification,” Rev. Mod. Phys. 82, 1155 (2010).

[Crossref]

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).

[Crossref]
[PubMed]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, “Standard quantum Limit for probing mechanical energy quantization,” Phys. Rev. Lett. 103, 100402 (2009).

[Crossref]
[PubMed]

H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, “Standard quantum Limit for probing mechanical energy quantization,” Phys. Rev. Lett. 103, 100402 (2009).

[Crossref]
[PubMed]

R. L. de Matos Filho and W. Vogel, “Second-sideband laser cooling and nonclassical motion of trapped ions,” Phys. Rev. A 50, R1988 (1994).

[Crossref]
[PubMed]

V. V. Dodonov and S. S. Mizrahi, “Exact stationary photon distributions due to competition between one- and two-photon absorption and emission,” J. Phys. A 30, 5657 (1997).

[Crossref]

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).

[Crossref]
[PubMed]

J. S. Feng, L. Tan, H. Q. Gu, and W. M. Liu, “Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime,” Phys. Rev. A 96, 063818 (2017).

[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing an optical pulse as a mechanical excitation in a silica pptomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

[Crossref]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).

[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D. Bouwmeester, “Optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 109, 023601 (2012).

[Crossref]
[PubMed]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Cooling in the single-photon regime of optomechanics,” Phys. Rev. A 85, 051803 (2012).

[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

A. A. Clerk, S. M. Girvin, and F. Marquardt, “Introduction to quantum noise, measurement, and amplification,” Rev. Mod. Phys. 82, 1155 (2010).

[Crossref]

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).

[Crossref]
[PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. HarrisStrong, “Strong dispersive coupling of a high finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

J. S. Feng, L. Tan, H. Q. Gu, and W. M. Liu, “Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime,” Phys. Rev. A 96, 063818 (2017).

[Crossref]

W. J. Gu, Z. Yi, L. H. Sun, and D. H. Xu, “Mechanical cooling in single-photon optomechanics with quadratic nonlinearity,” Phys. Rev. A 92, 023811 (2015).

[Crossref]

Y. Yan, W. J. Gu, and G. X. Li, “Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling,” Sci. China Phys. Mech. Astron. 58, 050306 (2015).

[Crossref]

W. J. Gu and G. X. Li, “Quantum interference effects on ground-state optomechanical cooling,” Phys. Rev. A 87, 025804 (2013).

[Crossref]

Y. Guo, K. Li, W. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

K. W. Murch, K. L. Moore, and S. Gupta, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561 (2008).

[Crossref]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).

[Crossref]
[PubMed]

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Optomechanical cavity cooling of an atomic ensemble,” Phys. Rev. Lett. 104, 213603 (2010).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707 (2010).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. HarrisStrong, “Strong dispersive coupling of a high finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

L. He, Y. X. Liu, S. Yi, C. P. Sun, and F. Nori, “Control of photon propagation via electromagnetically induced transparency in lossless media,” Phys. Rev. A 75, 063818 (2007).

[Crossref]

F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, “Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect,” Phys. Rev. A 79, 052115 (2009).

[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).

[Crossref]

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707 (2010).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. HarrisStrong, “Strong dispersive coupling of a high finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

J. D. Thompson, B. M. Zwickl, and A. M. Jayich, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D. Bouwmeester, “Optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 109, 023601 (2012).

[Crossref]
[PubMed]

M. Y. Yan, H. K. Li, Y. C. Liu, W. L. Jin, and Y. F. Xiao, “Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-Q microcavity,” Phys. Rev. A 88, 023802 (2013).

[Crossref]

X. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]
[PubMed]

X. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]
[PubMed]

T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, “Position-squared coupling in a tunable photonic crystal optomechanical cavity,” Phys. Rev. X 5, 041024 (2015).

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects, optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 107, 020405 (2011).

[Crossref]

R. W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P. L. Yu, K. W. Lehnert, and C.A. Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit,” Phys. Rev. Lett. 116, 063601 (2016).

[Crossref]
[PubMed]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects, optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 107, 020405 (2011).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).

[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172 (2008).

[Crossref]
[PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172 (2007).

[Crossref]
[PubMed]

L. Qiu, I. Shomroni, P. Seidler, and T. J. Kippenberg, “High-fidelity laser cooling to the quantum ground state of a silicon nanomechanical oscillator,” arXiv:1903.10242 [quant-ph].

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6, 768 (2012).

[Crossref]

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing an optical pulse as a mechanical excitation in a silica pptomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

[Crossref]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).

[Crossref]
[PubMed]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191 (2017).

[Crossref]
[PubMed]

R. W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P. L. Yu, K. W. Lehnert, and C.A. Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit,” Phys. Rev. Lett. 116, 063601 (2016).

[Crossref]
[PubMed]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

Y. Yan, W. J. Gu, and G. X. Li, “Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling,” Sci. China Phys. Mech. Astron. 58, 050306 (2015).

[Crossref]

W. J. Gu and G. X. Li, “Quantum interference effects on ground-state optomechanical cooling,” Phys. Rev. A 87, 025804 (2013).

[Crossref]

H. K. Li, X. X. Ren, Y. C. Liu, and Y. F. Xiao, “Effective photon-photon interactions in largely detuned optomechanics,” Phys. Rev. A 88, 053850 (2013).

[Crossref]

M. Y. Yan, H. K. Li, Y. C. Liu, W. L. Jin, and Y. F. Xiao, “Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-Q microcavity,” Phys. Rev. A 88, 023802 (2013).

[Crossref]

J. J. Li and K. D. Li, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223 (2013).

[Crossref]

Y. Guo, K. Li, W. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

J. J. Li and K. D. Li, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223 (2013).

[Crossref]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).

[Crossref]

Y. Guo, K. Li, W. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

F. Xue, L. Zhong, Y. Li, and C. P. Sun, “Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations,” Phys. Rev. B 75, 033407 (2007).

[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6, 768 (2012).

[Crossref]

J. S. Feng, L. Tan, H. Q. Gu, and W. M. Liu, “Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime,” Phys. Rev. A 96, 063818 (2017).

[Crossref]

Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state,” Sci. China Phys. Mech. Astron. 58, 050305 (2015).

[Crossref]

M. Y. Yan, H. K. Li, Y. C. Liu, W. L. Jin, and Y. F. Xiao, “Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-Q microcavity,” Phys. Rev. A 88, 023802 (2013).

[Crossref]

H. K. Li, X. X. Ren, Y. C. Liu, and Y. F. Xiao, “Effective photon-photon interactions in largely detuned optomechanics,” Phys. Rev. A 88, 053850 (2013).

[Crossref]

L. He, Y. X. Liu, S. Yi, C. P. Sun, and F. Nori, “Control of photon propagation via electromagnetically induced transparency in lossless media,” Phys. Rev. A 75, 063818 (2007).

[Crossref]

X. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]
[PubMed]

Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state,” Sci. China Phys. Mech. Astron. 58, 050305 (2015).

[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical cooling of a macroscopic oscillator by homodyne feedback,” Phys. Rev. Lett. 80, 688 (1998).

[Crossref]

F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, “Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect,” Phys. Rev. A 79, 052115 (2009).

[Crossref]

T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, “Position-squared coupling in a tunable photonic crystal optomechanical cavity,” Phys. Rev. X 5, 041024 (2015).

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).

[Crossref]

A. A. Clerk, S. M. Girvin, and F. Marquardt, “Introduction to quantum noise, measurement, and amplification,” Rev. Mod. Phys. 82, 1155 (2010).

[Crossref]

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Optomechanical cavity cooling of an atomic ensemble,” Phys. Rev. Lett. 104, 213603 (2010).

[Crossref]

F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, “Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect,” Phys. Rev. A 79, 052115 (2009).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. HarrisStrong, “Strong dispersive coupling of a high finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53 (2018).

[Crossref]
[PubMed]

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29 (2012).

[Crossref]

H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, “Standard quantum Limit for probing mechanical energy quantization,” Phys. Rev. Lett. 103, 100402 (2009).

[Crossref]
[PubMed]

Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, “A reversible optical to microwave quantum interface,” Phys. Rev. Lett. 109, 130503 (2012).

[Crossref]

V. V. Dodonov and S. S. Mizrahi, “Exact stationary photon distributions due to competition between one- and two-photon absorption and emission,” J. Phys. A 30, 5657 (1997).

[Crossref]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

K. W. Murch, K. L. Moore, and S. Gupta, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561 (2008).

[Crossref]

K. W. Murch, K. L. Moore, and S. Gupta, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561 (2008).

[Crossref]

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

Y. Guo, K. Li, W. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

X. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]
[PubMed]

L. He, Y. X. Liu, S. Yi, C. P. Sun, and F. Nori, “Control of photon propagation via electromagnetically induced transparency in lossless media,” Phys. Rev. A 75, 063818 (2007).

[Crossref]

T. Weiss and A. Nunnenkamp, “Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems,” Phys. Rev. A 88, 023850 (2013).

[Crossref]

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Cooling in the single-photon regime of optomechanics,” Phys. Rev. A 85, 051803 (2012).

[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

T. Ojanen and K. Børkje, “Ground state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).

[Crossref]

T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, “Position-squared coupling in a tunable photonic crystal optomechanical cavity,” Phys. Rev. X 5, 041024 (2015).

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6, 768 (2012).

[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, “Position-squared coupling in a tunable photonic crystal optomechanical cavity,” Phys. Rev. X 5, 041024 (2015).

B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D. Bouwmeester, “Optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 109, 023601 (2012).

[Crossref]
[PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).

[Crossref]

R. W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P. L. Yu, K. W. Lehnert, and C.A. Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit,” Phys. Rev. Lett. 116, 063601 (2016).

[Crossref]
[PubMed]

T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, “Position-squared coupling in a tunable photonic crystal optomechanical cavity,” Phys. Rev. X 5, 041024 (2015).

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects, optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 107, 020405 (2011).

[Crossref]

R. W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P. L. Yu, K. W. Lehnert, and C.A. Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit,” Phys. Rev. Lett. 116, 063601 (2016).

[Crossref]
[PubMed]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

L. Qiu, I. Shomroni, P. Seidler, and T. J. Kippenberg, “High-fidelity laser cooling to the quantum ground state of a silicon nanomechanical oscillator,” arXiv:1903.10242 [quant-ph].

R. W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P. L. Yu, K. W. Lehnert, and C.A. Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit,” Phys. Rev. Lett. 116, 063601 (2016).

[Crossref]
[PubMed]

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

H. K. Li, X. X. Ren, Y. C. Liu, and Y. F. Xiao, “Effective photon-photon interactions in largely detuned optomechanics,” Phys. Rev. A 88, 053850 (2013).

[Crossref]

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).

[Crossref]

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects, optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 107, 020405 (2011).

[Crossref]

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53 (2018).

[Crossref]
[PubMed]

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58 (7), 36 (2005).

[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

P. Sekatski, M. Aspelmeyer, and N. Sangouard, “Macroscopic optomechanics from displaced single-photon entanglement,” Phys. Rev. Lett. 112, 080502 (2014).

[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707 (2010).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53 (2018).

[Crossref]
[PubMed]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).

[Crossref]
[PubMed]

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29 (2012).

[Crossref]

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58 (7), 36 (2005).

[Crossref]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).

[Crossref]
[PubMed]

L. Qiu, I. Shomroni, P. Seidler, and T. J. Kippenberg, “High-fidelity laser cooling to the quantum ground state of a silicon nanomechanical oscillator,” arXiv:1903.10242 [quant-ph].

P. Sekatski, M. Aspelmeyer, and N. Sangouard, “Macroscopic optomechanics from displaced single-photon entanglement,” Phys. Rev. Lett. 112, 080502 (2014).

[Crossref]

L. Qiu, I. Shomroni, P. Seidler, and T. J. Kippenberg, “High-fidelity laser cooling to the quantum ground state of a silicon nanomechanical oscillator,” arXiv:1903.10242 [quant-ph].

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191 (2017).

[Crossref]
[PubMed]

B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D. Bouwmeester, “Optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 109, 023601 (2012).

[Crossref]
[PubMed]

F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, “Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect,” Phys. Rev. A 79, 052115 (2009).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

F. Xue, L. Zhong, Y. Li, and C. P. Sun, “Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations,” Phys. Rev. B 75, 033407 (2007).

[Crossref]

L. He, Y. X. Liu, S. Yi, C. P. Sun, and F. Nori, “Control of photon propagation via electromagnetically induced transparency in lossless media,” Phys. Rev. A 75, 063818 (2007).

[Crossref]

W. J. Gu, Z. Yi, L. H. Sun, and D. H. Xu, “Mechanical cooling in single-photon optomechanics with quadratic nonlinearity,” Phys. Rev. A 92, 023811 (2015).

[Crossref]

J. S. Feng, L. Tan, H. Q. Gu, and W. M. Liu, “Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime,” Phys. Rev. A 96, 063818 (2017).

[Crossref]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).

[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191 (2017).

[Crossref]
[PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. HarrisStrong, “Strong dispersive coupling of a high finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

J. D. Thompson, B. M. Zwickl, and A. M. Jayich, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing an optical pulse as a mechanical excitation in a silica pptomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, “A reversible optical to microwave quantum interface,” Phys. Rev. Lett. 109, 130503 (2012).

[Crossref]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical cooling of a macroscopic oscillator by homodyne feedback,” Phys. Rev. Lett. 80, 688 (1998).

[Crossref]

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53 (2018).

[Crossref]
[PubMed]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, “A reversible optical to microwave quantum interface,” Phys. Rev. Lett. 109, 130503 (2012).

[Crossref]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).

[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical cooling of a macroscopic oscillator by homodyne feedback,” Phys. Rev. Lett. 80, 688 (1998).

[Crossref]

R. L. de Matos Filho and W. Vogel, “Second-sideband laser cooling and nonclassical motion of trapped ions,” Phys. Rev. A 50, R1988 (1994).

[Crossref]
[PubMed]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing an optical pulse as a mechanical excitation in a silica pptomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

Y. D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012).

[Crossref]
[PubMed]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

T. Weiss and A. Nunnenkamp, “Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems,” Phys. Rev. A 88, 023850 (2013).

[Crossref]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6, 768 (2012).

[Crossref]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state,” Sci. China Phys. Mech. Astron. 58, 050305 (2015).

[Crossref]

Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

X. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]
[PubMed]

Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state,” Sci. China Phys. Mech. Astron. 58, 050305 (2015).

[Crossref]

M. Y. Yan, H. K. Li, Y. C. Liu, W. L. Jin, and Y. F. Xiao, “Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-Q microcavity,” Phys. Rev. A 88, 023802 (2013).

[Crossref]

H. K. Li, X. X. Ren, Y. C. Liu, and Y. F. Xiao, “Effective photon-photon interactions in largely detuned optomechanics,” Phys. Rev. A 88, 053850 (2013).

[Crossref]

W. J. Gu, Z. Yi, L. H. Sun, and D. H. Xu, “Mechanical cooling in single-photon optomechanics with quadratic nonlinearity,” Phys. Rev. A 92, 023811 (2015).

[Crossref]

F. Xue, L. Zhong, Y. Li, and C. P. Sun, “Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations,” Phys. Rev. B 75, 033407 (2007).

[Crossref]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).

[Crossref]
[PubMed]

M. Y. Yan, H. K. Li, Y. C. Liu, W. L. Jin, and Y. F. Xiao, “Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-Q microcavity,” Phys. Rev. A 88, 023802 (2013).

[Crossref]

Y. Yan, W. J. Gu, and G. X. Li, “Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling,” Sci. China Phys. Mech. Astron. 58, 050306 (2015).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707 (2010).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing an optical pulse as a mechanical excitation in a silica pptomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

[Crossref]

L. He, Y. X. Liu, S. Yi, C. P. Sun, and F. Nori, “Control of photon propagation via electromagnetically induced transparency in lossless media,” Phys. Rev. A 75, 063818 (2007).

[Crossref]

W. J. Gu, Z. Yi, L. H. Sun, and D. H. Xu, “Mechanical cooling in single-photon optomechanics with quadratic nonlinearity,” Phys. Rev. A 92, 023811 (2015).

[Crossref]

R. W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P. L. Yu, K. W. Lehnert, and C.A. Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit,” Phys. Rev. Lett. 116, 063601 (2016).

[Crossref]
[PubMed]

T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, “Position-squared coupling in a tunable photonic crystal optomechanical cavity,” Phys. Rev. X 5, 041024 (2015).

X. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]
[PubMed]

S. Zhang, J. Q. Zhang, J. Zhang, C. W. Wu, W. Wu, and P. X. Chen, “Ground state cooling of an optomechanical resonator assisted by a Λ-type atom,” Opt. Express 22, 28118 (2014).

[Crossref]
[PubMed]

F. Xue, L. Zhong, Y. Li, and C. P. Sun, “Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations,” Phys. Rev. B 75, 033407 (2007).

[Crossref]

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707 (2010).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. HarrisStrong, “Strong dispersive coupling of a high finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

J. D. Thompson, B. M. Zwickl, and A. M. Jayich, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

V. V. Dodonov and S. S. Mizrahi, “Exact stationary photon distributions due to competition between one- and two-photon absorption and emission,” J. Phys. A 30, 5657 (1997).

[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6, 768 (2012).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707 (2010).

[Crossref]

K. W. Murch, K. L. Moore, and S. Gupta, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561 (2008).

[Crossref]

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53 (2018).

[Crossref]
[PubMed]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191 (2017).

[Crossref]
[PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89 (2011).

[Crossref]
[PubMed]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature (London) 464, 697 (2010).

[Crossref]

J. D. Thompson, B. M. Zwickl, and A. M. Jayich, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. HarrisStrong, “Strong dispersive coupling of a high finesse cavity to a micromechanical membrane,” Nature (London) 452, 72 (2008).

[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).

[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172 (2007).

[Crossref]
[PubMed]

S. Zhang, J. Q. Zhang, J. Zhang, C. W. Wu, W. Wu, and P. X. Chen, “Ground state cooling of an optomechanical resonator assisted by a Λ-type atom,” Opt. Express 22, 28118 (2014).

[Crossref]
[PubMed]

J. J. Li and K. D. Li, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223 (2013).

[Crossref]

H. K. Li, X. X. Ren, Y. C. Liu, and Y. F. Xiao, “Effective photon-photon interactions in largely detuned optomechanics,” Phys. Rev. A 88, 053850 (2013).

[Crossref]

T. Weiss and A. Nunnenkamp, “Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems,” Phys. Rev. A 88, 023850 (2013).

[Crossref]

M. Y. Yan, H. K. Li, Y. C. Liu, W. L. Jin, and Y. F. Xiao, “Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-Q microcavity,” Phys. Rev. A 88, 023802 (2013).

[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).

[Crossref]

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).

[Crossref]

K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hansch, “Optical lattices with micromechanical mirrors,” Phys. Rev. A 82, 021803 (2010).

[Crossref]

Y. Guo, K. Li, W. Nie, and Y. Li, “Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system,” Phys. Rev. A 90, 053841 (2014).

[Crossref]

Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

W. J. Gu and G. X. Li, “Quantum interference effects on ground-state optomechanical cooling,” Phys. Rev. A 87, 025804 (2013).

[Crossref]

A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Cooling in the single-photon regime of optomechanics,” Phys. Rev. A 85, 051803 (2012).

[Crossref]

R. L. de Matos Filho and W. Vogel, “Second-sideband laser cooling and nonclassical motion of trapped ions,” Phys. Rev. A 50, R1988 (1994).

[Crossref]
[PubMed]

T. Ojanen and K. Børkje, “Ground state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).

[Crossref]

F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, “Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect,” Phys. Rev. A 79, 052115 (2009).

[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

W. J. Gu, Z. Yi, L. H. Sun, and D. H. Xu, “Mechanical cooling in single-photon optomechanics with quadratic nonlinearity,” Phys. Rev. A 92, 023811 (2015).

[Crossref]

J. S. Feng, L. Tan, H. Q. Gu, and W. M. Liu, “Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime,” Phys. Rev. A 96, 063818 (2017).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).

[Crossref]

L. He, Y. X. Liu, S. Yi, C. P. Sun, and F. Nori, “Control of photon propagation via electromagnetically induced transparency in lossless media,” Phys. Rev. A 75, 063818 (2007).

[Crossref]

F. Xue, L. Zhong, Y. Li, and C. P. Sun, “Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations,” Phys. Rev. B 75, 033407 (2007).

[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing an optical pulse as a mechanical excitation in a silica pptomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).

[Crossref]

Y. D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012).

[Crossref]
[PubMed]

Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, “A reversible optical to microwave quantum interface,” Phys. Rev. Lett. 109, 130503 (2012).

[Crossref]

O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects, optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 107, 020405 (2011).

[Crossref]

B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D. Bouwmeester, “Optomechanical superpositions via nested interferometry,” Phys. Rev. Lett. 109, 023601 (2012).

[Crossref]
[PubMed]

P. Sekatski, M. Aspelmeyer, and N. Sangouard, “Macroscopic optomechanics from displaced single-photon entanglement,” Phys. Rev. Lett. 112, 080502 (2014).

[Crossref]

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical cooling of a macroscopic oscillator by homodyne feedback,” Phys. Rev. Lett. 80, 688 (1998).

[Crossref]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).

[Crossref]
[PubMed]

M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, and G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107, 023601 (2011).

[Crossref]
[PubMed]

X. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]
[PubMed]

R. W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P. L. Yu, K. W. Lehnert, and C.A. Regal, “Laser cooling of a micromechanical membrane to the quantum backaction limit,” Phys. Rev. Lett. 116, 063601 (2016).

[Crossref]
[PubMed]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).

[Crossref]
[PubMed]

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).

[Crossref]
[PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).

[Crossref]

H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, “Standard quantum Limit for probing mechanical energy quantization,” Phys. Rev. Lett. 103, 100402 (2009).

[Crossref]
[PubMed]

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Optomechanical cavity cooling of an atomic ensemble,” Phys. Rev. Lett. 104, 213603 (2010).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, “Position-squared coupling in a tunable photonic crystal optomechanical cavity,” Phys. Rev. X 5, 041024 (2015).

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29 (2012).

[Crossref]

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58 (7), 36 (2005).

[Crossref]

M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di. Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Physics 15, 205 (2011).

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).

[Crossref]

A. A. Clerk, S. M. Girvin, and F. Marquardt, “Introduction to quantum noise, measurement, and amplification,” Rev. Mod. Phys. 82, 1155 (2010).

[Crossref]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state,” Sci. China Phys. Mech. Astron. 58, 050305 (2015).

[Crossref]

Y. Yan, W. J. Gu, and G. X. Li, “Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling,” Sci. China Phys. Mech. Astron. 58, 050306 (2015).

[Crossref]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).

[Crossref]
[PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172 (2008).

[Crossref]
[PubMed]

L. Qiu, I. Shomroni, P. Seidler, and T. J. Kippenberg, “High-fidelity laser cooling to the quantum ground state of a silicon nanomechanical oscillator,” arXiv:1903.10242 [quant-ph].