Abstract

We report an amplitude-measuring Rayleigh-based sensor that uses a series of frequency-shifted pulses to extract quantitative distributed strain measurements. By using frequency multiplexing, we are able to inject a train of 10 pulses into the fiber at once. This allows us to use a higher average input power than standard phase-sensitive optical time domain reflectometry systems, improving the sensitivity. The sensor recovers the strain by tracking the time-dependent amplitude of the Rayleigh backscattered light from all 10 pulses. This approach enables a sensor with a noise floor of ${1.5}\;{\rm p}\unicode{x03B5} /\surd {\rm Hz}$ over 10 km of fiber with 12 m spatial resolution, a 5 kHz bandwidth, and a dynamic range of 80 dB at 1 kHz. The sensor exhibits a high degree of linearity and is immune to interference fading.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative strain sensing in a multimode fiber using dual frequency speckle pattern tracking

Matthew J. Murray and Brandon Redding
Opt. Lett. 45(6) 1309-1312 (2020)

Distributed and dynamic strain sensing with high spatial resolution and large measurable strain range

Li Zhang, Zhisheng Yang, Nachum Gorbatov, Roy Davidi, Malak Galal, Luc Thévenaz, and Moshe Tur
Opt. Lett. 45(18) 5020-5023 (2020)

High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression

He Li, Qingwen Liu, Dian Chen, Yuanpeng Deng, and Zuyuan He
Opt. Lett. 45(2) 563-566 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription