Abstract

Digital holography has been widely applied in quantitative phase imaging (QPI) for monolayer objects within a limited depth. For multilayer imaging, compressive sensing is employed to eliminate defocused images but with missing phase information. A phase iteratively enhanced compressive sensing (PIE-CS) algorithm is proposed to achieve phase imaging and eliminate defocused images simultaneously. Linear filtering is first applied to the off-axis hologram in Fourier domain, and an intermediate reconstructed complex image is obtained. A periodic phase mask is then superimposed on the intermediate reconstructed image to iteratively eliminate the defocused images and recover the object with phase information. The experimental recovery of amplitude and phase of a two-layer sample with as little as 7% random measurement is demonstrated. The average phase error of the PIE-CS algorithm is analyzed, and the results show the feasibility for QPI.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High dynamic range coherent imaging using compressed sensing

Kuan He, Manoj Kumar Sharma, and Oliver Cossairt
Opt. Express 23(24) 30904-30916 (2015)

Compressive sensing for direct millimeter-wave holographic imaging

Lingbo Qiao, Yingxin Wang, Zongjun Shen, Ziran Zhao, and Zhiqiang Chen
Appl. Opt. 54(11) 3280-3289 (2015)

4D compressive sensing holographic imaging of small moving objects with multiple illuminations

Alexey Brodoline, Nitin Rawat, Daniel Alexandre, Nicolas Cubedo, and Michel Gross
Appl. Opt. 58(34) G127-G134 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription