Abstract

Dark resonances were formed via electromagnetically induced transparency for the first time, to the best of our knowledge, involving magnetically induced ΔF=±2 atomic transitions of alkali metal atoms, which are forbidden at zero magnetic field. The probability of these transitions undergoes rapid growth when 300–3000 G magnetic field is applied, allowing formation of dark resonances, widely tunable in the GHz range. It is established that for ΔF=+2 (ΔF=2) transition, the coupling laser tuned to ΔF=+1 (ΔF=1) transition of the hyperfine Λ-system must be σ+ (σ) polarized, manifesting anomalous circular dichroism.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperfine Paschen–Back regime in alkali metal atoms: consistency of two theoretical considerations and experiment

A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh
J. Opt. Soc. Am. B 31(5) 1046-1053 (2014)

Hyperfine Paschen–Back regime realized in Rb nanocell

Armen Sargsyan, Grant Hakhumyan, Claude Leroy, Yevgenya Pashayan-Leroy, Aram Papoyan, and David Sarkisyan
Opt. Lett. 37(8) 1379-1381 (2012)

Saturated-absorption spectroscopy revisited: atomic transitions in strong magnetic fields (>20  mT) with a micrometer-thin cell

A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. M. Wojciechowski, A. Stabrawa, and W. Gawlik
Opt. Lett. 39(8) 2270-2273 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription