Abstract

In order to improve the secrecy performance, we propose a secure hybrid radio frequency/free space optical (RF/FSO) transmission scheme that takes advantage of both the RF and FSO channels to protect the privacy messages. In the proposed scheme, Alice adaptively selects RF link or FSO link for information transmission according to the secrecy performance of each link. Considering the priority of the FSO link, we propose two secure transmission policies: the FSO dominant secure (FDS) policy and the secrecy rate optimal (SRO) policy. In the FDS policy, we assign high priority to the FSO link due to its high secrecy performance. Therefore, in this policy, Alice transmits the privacy information through the FSO link when the FSO link is reliable. When the FSO link cannot provide successful transmission, Alice will consider the RF secure transmission. In the SRO policy, Alice optimally selects FSO link or RF link according to the secrecy rates of both the FSO and RF links in each time slot. For both FDS and SRO policies, we analyze the secrecy performances and derive closed-form expressions for the average secrecy rate. Numerical results demonstrate the performance improvement of the proposed policies when compared with the current RF or FSO secure schemes in terms of the average secrecy rate.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Secure transmission for mixed FSO-RF relay networks with physical-layer key encryption and wiretap coding

Dawei Wang, Pinyi Ren, Julian Cheng, Qinghe Du, Yichen Wang, and Li Sun
Opt. Express 25(9) 10078-10089 (2017)

Free-space optical channel estimation for physical layer security

Hiroyuki Endo, Mikio Fujiwara, Mitsuo Kitamura, Toshiyuki Ito, Morio Toyoshima, Yoshihisa Takayama, Hideki Takenaka, Ryosuke Shimizu, Nicola Laurenti, Giuseppe Vallone, Paolo Villoresi, Takao Aoki, and Masahide Sasaki
Opt. Express 24(8) 8940-8955 (2016)

Free space optical secret key agreement

Hiroyuki Endo, Mikio Fujiwara, Mitsuo Kitamura, Orie Tsuzuki, Toshiyuki Ito, Ryosuke Shimizu, Masahiro Takeoka, and Masahide Sasaki
Opt. Express 26(18) 23305-23332 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M.-S. Alouini, “Optical wireless: The story so far,” IEEE Commun. Mag. 36(12), 72–74 (1988).
  2. B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 42(10), 62–69 (2007).
    [Crossref]
  3. H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M.-S. Alouini, “Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems,” IEEE Wirel. Commun. 22(5), 98–104 (2015).
    [Crossref]
  4. A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Hybrid radio/free-space optical design for next generation backhaul systems,” IEEE Trans. Commun. 64(6), 2563–2577 (2016).
    [Crossref]
  5. M. Usman, H. Yang, and M.-S. Alouini, “Practical switching-based hybrid FSO/RF transmission and its performance analysis,” IEEE Photonics J. 6(5), 1–14 (2014).
    [Crossref]
  6. Y. Liang, H. O. Mazen, and X. Gao, “Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels,” IEEE J. Sel. Areas Commun.,  33(9), 1913–1924 (2015).
    [Crossref]
  7. T. D. Goran, I. P. Milica, M. C. Aleksandra, and G. K. Karagiannidis, “Mixed RF/FSO relaying with outdated channel state information,” IEEE J. Sel. Areas Commun.,  33(9), 1935–1948 (2015).
    [Crossref]
  8. T. Rakia, H. Yang, M.-S. Alouini, and F. Gebali, “Outage analysis of practical FSO/RF hybrid system with adaptive combining,” IEEE Commun. Lett.,  19(8), 1366–1369 (2015).
    [Crossref]
  9. L. Kong, W. Xu, L. Hanzo, H. Zhang, and C. Zhao, “Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels,” IEEE Photonics J. 7(5), 1–20 (2015).
    [Crossref]
  10. A. D. Wyner, “The wire-tap channel, ” Bell Syst. Tech. J.,  54(8), 1335–1387 (1975).
    [Crossref]
  11. D. Wang, P. Ren, J. Cheng, and Y. Wang, “Achieving full secrecy rate with energy-efficient transmission control,” IEEE Trans. Commun. 65(12), 5386–5400 (2017).
    [Crossref]
  12. H. Liu, K. J. Kim, T. A. Tsiftsis, K. S. Kwak, and H. V. Poor, “Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls,” IEEE Trans. Signal Process. 65(23), 6185–6200 (2017).
    [Crossref]
  13. X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative MIMO relaying systems,” IEEE Trans. Veh. Tech. 67(3), 2035–2048 (2018).
  14. L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis, “Secrecy cooperative networks with outdated relay selection over correlated fading channels,” IEEE Trans. Veh. Tech. 66(8), 7599–7603 (2017).
    [Crossref]
  15. T. Mekkawy, R. Yao, T. A. Tsiftsis, F. Xu, and Y. Lu, “Joint beamforming alignment with suboptimal power allocation for a two way untrusted relay network,” IEEE Trans. Inf. Forensics Secur. 13(10), 2464–2474 (2018).
  16. A. Mabrouk, A. E. Shafie, K. Tourki, and N. Al-Dhahir, “Adaptive secure transmission for RF-EH untrusted relaying with alien eavesdropping,” IEEE Commun. Lett. 21(11), 2516–2519 (2017).
    [Crossref]
  17. D. Wang, P. Ren, and J. Cheng, “Cooperative secure communication in two-hop buffer-aided networks,” IEEE Trans. Commun. 66(3), 972–2985 (2018).
    [Crossref]
  18. T. M. Hoang, T. Q. Duong, H. D. Tuan, and H. V. Poor, “Secure massive MIMO relaying systems in a poisson field of eavesdroppers,” IEEE Trans. Commun. 675(11), 4857–24870 (2017).
    [Crossref]
  19. J. Choi, “Physical layer security for channel-aware random access with opportunistic jammings,” IEEE Trans. Inf. Forensics Secur. 12(11), 2699–2711 (2017).
    [Crossref]
  20. L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers,” IEEE Trans. Veh. Tech. 167(7), 2108–2117 (2018).
    [Crossref]
  21. H. Xing, K. Wong, A. Nallanathan, and R. Zhang, “Wireless powered cooperative jamming for secrecy multi-AF relaying networks,” IEEE Trans. Wireless Commun. 15(12), 7971–7984 (2016).
    [Crossref]
  22. D. Wang, P. Ren, Q. Du, L. Sun, and Y. Wang, “Security provisioning for MISO vehicular relay networks via cooperative jamming and signal superposition,” IEEE Trans. Veh. Tech. 66(12), 10732–10747 (2017).
    [Crossref]
  23. R. Zhao, Y. Huang, W. Wang, and V. K. N. Lau, “Ergodic achievable secrecy rate of multiple-antenna relay systems with cooperative jamming,” IEEE Trans. Wireless Commun. 15(4), 26537–2551 (2016).
    [Crossref]
  24. A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling,” IEEE Trans. Wireless Commun. 15(9), 5904–5918 (2016).
    [Crossref]
  25. A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Effect of RF interference on the security-reliability tradeoff analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightwave Technol. 35(9), 1490–1505 (2017).
    [Crossref]
  26. I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors, ” IEEE Trans. Wireless Commun.,  14(8), 4248–4264 (2015).
    [Crossref]
  27. E. Zedini, H. Soury, and M.-S. Alouini, “On the performance analysis of dual-hop mixed FSO/RF systems,” IEEE Trans. Wireless Commun. 15(5), 3679–3689 (2016).
    [Crossref]
  28. A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” J. Lightw. Technol.,  25(7), 1702–1710 (2007).
    [Crossref]
  29. D. Zhai, R. Zhang, L. Cai, B Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for NOMA based wireless networks with massive IoT devices,” IEEE Int. Things,  5(3), 1857–1868 (2018).
    [Crossref]
  30. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed., (Academic, 2007).
  31. H. Lei, Z. Dai, I. Shaflque, K. -H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance of mixed RF-FSO systems,” IEEE Photonics J. 9(4), 1–15 (2017).
    [Crossref]
  32. H. Lei, H. Luo, K. -H. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photonics J. 10(3), 1–14 (2018).
    [Crossref]
  33. Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Commun.,  18(2), 66–74 (2011).
    [Crossref]
  34. G. Marsaglia and W. W. Tsang, “A simple method for generating gamma variables,” ACM T. Math. Software (TOMS),  26(3), 363–372 (2000).
    [Crossref]
  35. D. Kundu and R. D. Gupta, “A convenient way of generating gamma random variables using generalized exponential distribution,” Comput. Stat. Data Anal.,  51(6), 2796–72802 (2007).
    [Crossref]
  36. D. A. Luong, T. C. Thang, and A. T. Pham, “FEffect of avalanche photodiode and thermal noises on the performance of binary phase-shift keying-subcarrier-intensity modulation/free-space optical systems over turbulence channels,” IET Commun.,  7(8), 738–744 (2013).
    [Crossref]
  37. B. He and R. Schober, “Bit-interleaved coded modulation for hybrid RF/FSO systems,” IEEE Trans. Commun.,  62(2), 713–725 (2014).

2018 (6)

X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative MIMO relaying systems,” IEEE Trans. Veh. Tech. 67(3), 2035–2048 (2018).

T. Mekkawy, R. Yao, T. A. Tsiftsis, F. Xu, and Y. Lu, “Joint beamforming alignment with suboptimal power allocation for a two way untrusted relay network,” IEEE Trans. Inf. Forensics Secur. 13(10), 2464–2474 (2018).

D. Wang, P. Ren, and J. Cheng, “Cooperative secure communication in two-hop buffer-aided networks,” IEEE Trans. Commun. 66(3), 972–2985 (2018).
[Crossref]

L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers,” IEEE Trans. Veh. Tech. 167(7), 2108–2117 (2018).
[Crossref]

D. Zhai, R. Zhang, L. Cai, B Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for NOMA based wireless networks with massive IoT devices,” IEEE Int. Things,  5(3), 1857–1868 (2018).
[Crossref]

H. Lei, H. Luo, K. -H. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photonics J. 10(3), 1–14 (2018).
[Crossref]

2017 (9)

H. Lei, Z. Dai, I. Shaflque, K. -H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance of mixed RF-FSO systems,” IEEE Photonics J. 9(4), 1–15 (2017).
[Crossref]

D. Wang, P. Ren, Q. Du, L. Sun, and Y. Wang, “Security provisioning for MISO vehicular relay networks via cooperative jamming and signal superposition,” IEEE Trans. Veh. Tech. 66(12), 10732–10747 (2017).
[Crossref]

T. M. Hoang, T. Q. Duong, H. D. Tuan, and H. V. Poor, “Secure massive MIMO relaying systems in a poisson field of eavesdroppers,” IEEE Trans. Commun. 675(11), 4857–24870 (2017).
[Crossref]

J. Choi, “Physical layer security for channel-aware random access with opportunistic jammings,” IEEE Trans. Inf. Forensics Secur. 12(11), 2699–2711 (2017).
[Crossref]

A. Mabrouk, A. E. Shafie, K. Tourki, and N. Al-Dhahir, “Adaptive secure transmission for RF-EH untrusted relaying with alien eavesdropping,” IEEE Commun. Lett. 21(11), 2516–2519 (2017).
[Crossref]

L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis, “Secrecy cooperative networks with outdated relay selection over correlated fading channels,” IEEE Trans. Veh. Tech. 66(8), 7599–7603 (2017).
[Crossref]

D. Wang, P. Ren, J. Cheng, and Y. Wang, “Achieving full secrecy rate with energy-efficient transmission control,” IEEE Trans. Commun. 65(12), 5386–5400 (2017).
[Crossref]

H. Liu, K. J. Kim, T. A. Tsiftsis, K. S. Kwak, and H. V. Poor, “Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls,” IEEE Trans. Signal Process. 65(23), 6185–6200 (2017).
[Crossref]

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Effect of RF interference on the security-reliability tradeoff analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightwave Technol. 35(9), 1490–1505 (2017).
[Crossref]

2016 (5)

A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Hybrid radio/free-space optical design for next generation backhaul systems,” IEEE Trans. Commun. 64(6), 2563–2577 (2016).
[Crossref]

R. Zhao, Y. Huang, W. Wang, and V. K. N. Lau, “Ergodic achievable secrecy rate of multiple-antenna relay systems with cooperative jamming,” IEEE Trans. Wireless Commun. 15(4), 26537–2551 (2016).
[Crossref]

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling,” IEEE Trans. Wireless Commun. 15(9), 5904–5918 (2016).
[Crossref]

H. Xing, K. Wong, A. Nallanathan, and R. Zhang, “Wireless powered cooperative jamming for secrecy multi-AF relaying networks,” IEEE Trans. Wireless Commun. 15(12), 7971–7984 (2016).
[Crossref]

E. Zedini, H. Soury, and M.-S. Alouini, “On the performance analysis of dual-hop mixed FSO/RF systems,” IEEE Trans. Wireless Commun. 15(5), 3679–3689 (2016).
[Crossref]

2015 (6)

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors, ” IEEE Trans. Wireless Commun.,  14(8), 4248–4264 (2015).
[Crossref]

H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M.-S. Alouini, “Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems,” IEEE Wirel. Commun. 22(5), 98–104 (2015).
[Crossref]

Y. Liang, H. O. Mazen, and X. Gao, “Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels,” IEEE J. Sel. Areas Commun.,  33(9), 1913–1924 (2015).
[Crossref]

T. D. Goran, I. P. Milica, M. C. Aleksandra, and G. K. Karagiannidis, “Mixed RF/FSO relaying with outdated channel state information,” IEEE J. Sel. Areas Commun.,  33(9), 1935–1948 (2015).
[Crossref]

T. Rakia, H. Yang, M.-S. Alouini, and F. Gebali, “Outage analysis of practical FSO/RF hybrid system with adaptive combining,” IEEE Commun. Lett.,  19(8), 1366–1369 (2015).
[Crossref]

L. Kong, W. Xu, L. Hanzo, H. Zhang, and C. Zhao, “Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels,” IEEE Photonics J. 7(5), 1–20 (2015).
[Crossref]

2014 (2)

M. Usman, H. Yang, and M.-S. Alouini, “Practical switching-based hybrid FSO/RF transmission and its performance analysis,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

B. He and R. Schober, “Bit-interleaved coded modulation for hybrid RF/FSO systems,” IEEE Trans. Commun.,  62(2), 713–725 (2014).

2013 (1)

D. A. Luong, T. C. Thang, and A. T. Pham, “FEffect of avalanche photodiode and thermal noises on the performance of binary phase-shift keying-subcarrier-intensity modulation/free-space optical systems over turbulence channels,” IET Commun.,  7(8), 738–744 (2013).
[Crossref]

2011 (1)

Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Commun.,  18(2), 66–74 (2011).
[Crossref]

2007 (3)

D. Kundu and R. D. Gupta, “A convenient way of generating gamma random variables using generalized exponential distribution,” Comput. Stat. Data Anal.,  51(6), 2796–72802 (2007).
[Crossref]

A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” J. Lightw. Technol.,  25(7), 1702–1710 (2007).
[Crossref]

B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 42(10), 62–69 (2007).
[Crossref]

2000 (1)

G. Marsaglia and W. W. Tsang, “A simple method for generating gamma variables,” ACM T. Math. Software (TOMS),  26(3), 363–372 (2000).
[Crossref]

1988 (1)

M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M.-S. Alouini, “Optical wireless: The story so far,” IEEE Commun. Mag. 36(12), 72–74 (1988).

1975 (1)

A. D. Wyner, “The wire-tap channel, ” Bell Syst. Tech. J.,  54(8), 1335–1387 (1975).
[Crossref]

Al-Dhahir, N.

A. Mabrouk, A. E. Shafie, K. Tourki, and N. Al-Dhahir, “Adaptive secure transmission for RF-EH untrusted relaying with alien eavesdropping,” IEEE Commun. Lett. 21(11), 2516–2519 (2017).
[Crossref]

Aleksandra, M. C.

T. D. Goran, I. P. Milica, M. C. Aleksandra, and G. K. Karagiannidis, “Mixed RF/FSO relaying with outdated channel state information,” IEEE J. Sel. Areas Commun.,  33(9), 1935–1948 (2015).
[Crossref]

Al-Naffouri, T. Y.

A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Hybrid radio/free-space optical design for next generation backhaul systems,” IEEE Trans. Commun. 64(6), 2563–2577 (2016).
[Crossref]

H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M.-S. Alouini, “Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems,” IEEE Wirel. Commun. 22(5), 98–104 (2015).
[Crossref]

Alouini, M.-S.

H. Lei, H. Luo, K. -H. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photonics J. 10(3), 1–14 (2018).
[Crossref]

H. Lei, Z. Dai, I. Shaflque, K. -H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance of mixed RF-FSO systems,” IEEE Photonics J. 9(4), 1–15 (2017).
[Crossref]

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Effect of RF interference on the security-reliability tradeoff analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightwave Technol. 35(9), 1490–1505 (2017).
[Crossref]

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling,” IEEE Trans. Wireless Commun. 15(9), 5904–5918 (2016).
[Crossref]

E. Zedini, H. Soury, and M.-S. Alouini, “On the performance analysis of dual-hop mixed FSO/RF systems,” IEEE Trans. Wireless Commun. 15(5), 3679–3689 (2016).
[Crossref]

A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Hybrid radio/free-space optical design for next generation backhaul systems,” IEEE Trans. Commun. 64(6), 2563–2577 (2016).
[Crossref]

H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M.-S. Alouini, “Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems,” IEEE Wirel. Commun. 22(5), 98–104 (2015).
[Crossref]

T. Rakia, H. Yang, M.-S. Alouini, and F. Gebali, “Outage analysis of practical FSO/RF hybrid system with adaptive combining,” IEEE Commun. Lett.,  19(8), 1366–1369 (2015).
[Crossref]

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors, ” IEEE Trans. Wireless Commun.,  14(8), 4248–4264 (2015).
[Crossref]

M. Usman, H. Yang, and M.-S. Alouini, “Practical switching-based hybrid FSO/RF transmission and its performance analysis,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M.-S. Alouini, “Optical wireless: The story so far,” IEEE Commun. Mag. 36(12), 72–74 (1988).

Alzenad, M.

M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M.-S. Alouini, “Optical wireless: The story so far,” IEEE Commun. Mag. 36(12), 72–74 (1988).

Ansari, I. S.

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors, ” IEEE Trans. Wireless Commun.,  14(8), 4248–4264 (2015).
[Crossref]

Cai, L.

D. Zhai, R. Zhang, L. Cai, B Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for NOMA based wireless networks with massive IoT devices,” IEEE Int. Things,  5(3), 1857–1868 (2018).
[Crossref]

Cai, Y.

X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative MIMO relaying systems,” IEEE Trans. Veh. Tech. 67(3), 2035–2048 (2018).

Chang, S. Y.

Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Commun.,  18(2), 66–74 (2011).
[Crossref]

Chen, H.-H.

Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Commun.,  18(2), 66–74 (2011).
[Crossref]

Cheng, J.

D. Wang, P. Ren, and J. Cheng, “Cooperative secure communication in two-hop buffer-aided networks,” IEEE Trans. Commun. 66(3), 972–2985 (2018).
[Crossref]

D. Wang, P. Ren, J. Cheng, and Y. Wang, “Achieving full secrecy rate with energy-efficient transmission control,” IEEE Trans. Commun. 65(12), 5386–5400 (2017).
[Crossref]

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors, ” IEEE Trans. Wireless Commun.,  14(8), 4248–4264 (2015).
[Crossref]

Choi, J.

J. Choi, “Physical layer security for channel-aware random access with opportunistic jammings,” IEEE Trans. Inf. Forensics Secur. 12(11), 2699–2711 (2017).
[Crossref]

Dahrouj, H.

A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Hybrid radio/free-space optical design for next generation backhaul systems,” IEEE Trans. Commun. 64(6), 2563–2577 (2016).
[Crossref]

H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M.-S. Alouini, “Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems,” IEEE Wirel. Commun. 22(5), 98–104 (2015).
[Crossref]

Dai, Z.

H. Lei, Z. Dai, I. Shaflque, K. -H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance of mixed RF-FSO systems,” IEEE Photonics J. 9(4), 1–15 (2017).
[Crossref]

Douik, A.

A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Hybrid radio/free-space optical design for next generation backhaul systems,” IEEE Trans. Commun. 64(6), 2563–2577 (2016).
[Crossref]

H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M.-S. Alouini, “Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems,” IEEE Wirel. Commun. 22(5), 98–104 (2015).
[Crossref]

Du, Q.

D. Wang, P. Ren, Q. Du, L. Sun, and Y. Wang, “Security provisioning for MISO vehicular relay networks via cooperative jamming and signal superposition,” IEEE Trans. Veh. Tech. 66(12), 10732–10747 (2017).
[Crossref]

Duong, T. Q.

X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative MIMO relaying systems,” IEEE Trans. Veh. Tech. 67(3), 2035–2048 (2018).

L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis, “Secrecy cooperative networks with outdated relay selection over correlated fading channels,” IEEE Trans. Veh. Tech. 66(8), 7599–7603 (2017).
[Crossref]

T. M. Hoang, T. Q. Duong, H. D. Tuan, and H. V. Poor, “Secure massive MIMO relaying systems in a poisson field of eavesdroppers,” IEEE Trans. Commun. 675(11), 4857–24870 (2017).
[Crossref]

El-Malek, A. H. A.

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Effect of RF interference on the security-reliability tradeoff analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightwave Technol. 35(9), 1490–1505 (2017).
[Crossref]

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling,” IEEE Trans. Wireless Commun. 15(9), 5904–5918 (2016).
[Crossref]

Epple, B.

B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 42(10), 62–69 (2007).
[Crossref]

Fan, L.

L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis, “Secrecy cooperative networks with outdated relay selection over correlated fading channels,” IEEE Trans. Veh. Tech. 66(8), 7599–7603 (2017).
[Crossref]

Farid, A.

A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” J. Lightw. Technol.,  25(7), 1702–1710 (2007).
[Crossref]

Gao, X.

Y. Liang, H. O. Mazen, and X. Gao, “Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels,” IEEE J. Sel. Areas Commun.,  33(9), 1913–1924 (2015).
[Crossref]

Gebali, F.

T. Rakia, H. Yang, M.-S. Alouini, and F. Gebali, “Outage analysis of practical FSO/RF hybrid system with adaptive combining,” IEEE Commun. Lett.,  19(8), 1366–1369 (2015).
[Crossref]

Goran, T. D.

T. D. Goran, I. P. Milica, M. C. Aleksandra, and G. K. Karagiannidis, “Mixed RF/FSO relaying with outdated channel state information,” IEEE J. Sel. Areas Commun.,  33(9), 1935–1948 (2015).
[Crossref]

Gradshteyn, I. S.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed., (Academic, 2007).

Gupta, R. D.

D. Kundu and R. D. Gupta, “A convenient way of generating gamma random variables using generalized exponential distribution,” Comput. Stat. Data Anal.,  51(6), 2796–72802 (2007).
[Crossref]

Hanzo, L.

L. Kong, W. Xu, L. Hanzo, H. Zhang, and C. Zhao, “Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels,” IEEE Photonics J. 7(5), 1–20 (2015).
[Crossref]

He, B.

B. He and R. Schober, “Bit-interleaved coded modulation for hybrid RF/FSO systems,” IEEE Trans. Commun.,  62(2), 713–725 (2014).

Henniger, H.

B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 42(10), 62–69 (2007).
[Crossref]

Hoang, T. M.

T. M. Hoang, T. Q. Duong, H. D. Tuan, and H. V. Poor, “Secure massive MIMO relaying systems in a poisson field of eavesdroppers,” IEEE Trans. Commun. 675(11), 4857–24870 (2017).
[Crossref]

Hranilovic, S.

A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” J. Lightw. Technol.,  25(7), 1702–1710 (2007).
[Crossref]

Hu, L.

L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers,” IEEE Trans. Veh. Tech. 167(7), 2108–2117 (2018).
[Crossref]

Huang, S. C.-H.

Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Commun.,  18(2), 66–74 (2011).
[Crossref]

Huang, Y.

X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative MIMO relaying systems,” IEEE Trans. Veh. Tech. 67(3), 2035–2048 (2018).

R. Zhao, Y. Huang, W. Wang, and V. K. N. Lau, “Ergodic achievable secrecy rate of multiple-antenna relay systems with cooperative jamming,” IEEE Trans. Wireless Commun. 15(4), 26537–2551 (2016).
[Crossref]

Jiang, Y.

D. Zhai, R. Zhang, L. Cai, B Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for NOMA based wireless networks with massive IoT devices,” IEEE Int. Things,  5(3), 1857–1868 (2018).
[Crossref]

Karagiannidis, G. K.

L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis, “Secrecy cooperative networks with outdated relay selection over correlated fading channels,” IEEE Trans. Veh. Tech. 66(8), 7599–7603 (2017).
[Crossref]

T. D. Goran, I. P. Milica, M. C. Aleksandra, and G. K. Karagiannidis, “Mixed RF/FSO relaying with outdated channel state information,” IEEE J. Sel. Areas Commun.,  33(9), 1935–1948 (2015).
[Crossref]

Kim, K. J.

H. Liu, K. J. Kim, T. A. Tsiftsis, K. S. Kwak, and H. V. Poor, “Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls,” IEEE Trans. Signal Process. 65(23), 6185–6200 (2017).
[Crossref]

Kong, L.

L. Kong, W. Xu, L. Hanzo, H. Zhang, and C. Zhao, “Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels,” IEEE Photonics J. 7(5), 1–20 (2015).
[Crossref]

Kundu, D.

D. Kundu and R. D. Gupta, “A convenient way of generating gamma random variables using generalized exponential distribution,” Comput. Stat. Data Anal.,  51(6), 2796–72802 (2007).
[Crossref]

Kwak, K. S.

H. Liu, K. J. Kim, T. A. Tsiftsis, K. S. Kwak, and H. V. Poor, “Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls,” IEEE Trans. Signal Process. 65(23), 6185–6200 (2017).
[Crossref]

Lau, V. K. N.

R. Zhao, Y. Huang, W. Wang, and V. K. N. Lau, “Ergodic achievable secrecy rate of multiple-antenna relay systems with cooperative jamming,” IEEE Trans. Wireless Commun. 15(4), 26537–2551 (2016).
[Crossref]

Lei, H.

H. Lei, H. Luo, K. -H. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photonics J. 10(3), 1–14 (2018).
[Crossref]

H. Lei, Z. Dai, I. Shaflque, K. -H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance of mixed RF-FSO systems,” IEEE Photonics J. 9(4), 1–15 (2017).
[Crossref]

Lei, X.

L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis, “Secrecy cooperative networks with outdated relay selection over correlated fading channels,” IEEE Trans. Veh. Tech. 66(8), 7599–7603 (2017).
[Crossref]

Li, B

D. Zhai, R. Zhang, L. Cai, B Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for NOMA based wireless networks with massive IoT devices,” IEEE Int. Things,  5(3), 1857–1868 (2018).
[Crossref]

Liang, Y.

Y. Liang, H. O. Mazen, and X. Gao, “Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels,” IEEE J. Sel. Areas Commun.,  33(9), 1913–1924 (2015).
[Crossref]

Liao, R.

L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers,” IEEE Trans. Veh. Tech. 167(7), 2108–2117 (2018).
[Crossref]

Liu, H.

H. Liu, K. J. Kim, T. A. Tsiftsis, K. S. Kwak, and H. V. Poor, “Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls,” IEEE Trans. Signal Process. 65(23), 6185–6200 (2017).
[Crossref]

Lu, Y.

T. Mekkawy, R. Yao, T. A. Tsiftsis, F. Xu, and Y. Lu, “Joint beamforming alignment with suboptimal power allocation for a two way untrusted relay network,” IEEE Trans. Inf. Forensics Secur. 13(10), 2464–2474 (2018).

Luo, H.

H. Lei, H. Luo, K. -H. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photonics J. 10(3), 1–14 (2018).
[Crossref]

Luong, D. A.

D. A. Luong, T. C. Thang, and A. T. Pham, “FEffect of avalanche photodiode and thermal noises on the performance of binary phase-shift keying-subcarrier-intensity modulation/free-space optical systems over turbulence channels,” IET Commun.,  7(8), 738–744 (2013).
[Crossref]

Mabrouk, A.

A. Mabrouk, A. E. Shafie, K. Tourki, and N. Al-Dhahir, “Adaptive secure transmission for RF-EH untrusted relaying with alien eavesdropping,” IEEE Commun. Lett. 21(11), 2516–2519 (2017).
[Crossref]

Marsaglia, G.

G. Marsaglia and W. W. Tsang, “A simple method for generating gamma variables,” ACM T. Math. Software (TOMS),  26(3), 363–372 (2000).
[Crossref]

Mazen, H. O.

Y. Liang, H. O. Mazen, and X. Gao, “Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels,” IEEE J. Sel. Areas Commun.,  33(9), 1913–1924 (2015).
[Crossref]

Mekkawy, T.

T. Mekkawy, R. Yao, T. A. Tsiftsis, F. Xu, and Y. Lu, “Joint beamforming alignment with suboptimal power allocation for a two way untrusted relay network,” IEEE Trans. Inf. Forensics Secur. 13(10), 2464–2474 (2018).

Milica, I. P.

T. D. Goran, I. P. Milica, M. C. Aleksandra, and G. K. Karagiannidis, “Mixed RF/FSO relaying with outdated channel state information,” IEEE J. Sel. Areas Commun.,  33(9), 1935–1948 (2015).
[Crossref]

Nallanathan, A.

H. Xing, K. Wong, A. Nallanathan, and R. Zhang, “Wireless powered cooperative jamming for secrecy multi-AF relaying networks,” IEEE Trans. Wireless Commun. 15(12), 7971–7984 (2016).
[Crossref]

Pan, F.

L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers,” IEEE Trans. Veh. Tech. 167(7), 2108–2117 (2018).
[Crossref]

Pan, G.

H. Lei, H. Luo, K. -H. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photonics J. 10(3), 1–14 (2018).
[Crossref]

H. Lei, Z. Dai, I. Shaflque, K. -H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance of mixed RF-FSO systems,” IEEE Photonics J. 9(4), 1–15 (2017).
[Crossref]

Park, K. -H.

H. Lei, H. Luo, K. -H. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photonics J. 10(3), 1–14 (2018).
[Crossref]

H. Lei, Z. Dai, I. Shaflque, K. -H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance of mixed RF-FSO systems,” IEEE Photonics J. 9(4), 1–15 (2017).
[Crossref]

Pham, A. T.

D. A. Luong, T. C. Thang, and A. T. Pham, “FEffect of avalanche photodiode and thermal noises on the performance of binary phase-shift keying-subcarrier-intensity modulation/free-space optical systems over turbulence channels,” IET Commun.,  7(8), 738–744 (2013).
[Crossref]

Poor, H. V.

T. M. Hoang, T. Q. Duong, H. D. Tuan, and H. V. Poor, “Secure massive MIMO relaying systems in a poisson field of eavesdroppers,” IEEE Trans. Commun. 675(11), 4857–24870 (2017).
[Crossref]

H. Liu, K. J. Kim, T. A. Tsiftsis, K. S. Kwak, and H. V. Poor, “Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls,” IEEE Trans. Signal Process. 65(23), 6185–6200 (2017).
[Crossref]

Rakia, T.

T. Rakia, H. Yang, M.-S. Alouini, and F. Gebali, “Outage analysis of practical FSO/RF hybrid system with adaptive combining,” IEEE Commun. Lett.,  19(8), 1366–1369 (2015).
[Crossref]

Rayal, F.

H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M.-S. Alouini, “Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems,” IEEE Wirel. Commun. 22(5), 98–104 (2015).
[Crossref]

Ren, P.

D. Wang, P. Ren, and J. Cheng, “Cooperative secure communication in two-hop buffer-aided networks,” IEEE Trans. Commun. 66(3), 972–2985 (2018).
[Crossref]

D. Wang, P. Ren, J. Cheng, and Y. Wang, “Achieving full secrecy rate with energy-efficient transmission control,” IEEE Trans. Commun. 65(12), 5386–5400 (2017).
[Crossref]

D. Wang, P. Ren, Q. Du, L. Sun, and Y. Wang, “Security provisioning for MISO vehicular relay networks via cooperative jamming and signal superposition,” IEEE Trans. Veh. Tech. 66(12), 10732–10747 (2017).
[Crossref]

Ren, Z.

H. Lei, H. Luo, K. -H. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photonics J. 10(3), 1–14 (2018).
[Crossref]

Ryzhik, I. M.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed., (Academic, 2007).

Salhab, A. M.

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Effect of RF interference on the security-reliability tradeoff analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightwave Technol. 35(9), 1490–1505 (2017).
[Crossref]

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling,” IEEE Trans. Wireless Commun. 15(9), 5904–5918 (2016).
[Crossref]

Schober, R.

B. He and R. Schober, “Bit-interleaved coded modulation for hybrid RF/FSO systems,” IEEE Trans. Commun.,  62(2), 713–725 (2014).

Shafie, A. E.

A. Mabrouk, A. E. Shafie, K. Tourki, and N. Al-Dhahir, “Adaptive secure transmission for RF-EH untrusted relaying with alien eavesdropping,” IEEE Commun. Lett. 21(11), 2516–2519 (2017).
[Crossref]

Shaflque, I.

H. Lei, Z. Dai, I. Shaflque, K. -H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance of mixed RF-FSO systems,” IEEE Photonics J. 9(4), 1–15 (2017).
[Crossref]

Shakir, M. Z.

M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M.-S. Alouini, “Optical wireless: The story so far,” IEEE Commun. Mag. 36(12), 72–74 (1988).

Shiu, Y.-S.

Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Commun.,  18(2), 66–74 (2011).
[Crossref]

Soury, H.

E. Zedini, H. Soury, and M.-S. Alouini, “On the performance analysis of dual-hop mixed FSO/RF systems,” IEEE Trans. Wireless Commun. 15(5), 3679–3689 (2016).
[Crossref]

Sun, L.

D. Wang, P. Ren, Q. Du, L. Sun, and Y. Wang, “Security provisioning for MISO vehicular relay networks via cooperative jamming and signal superposition,” IEEE Trans. Veh. Tech. 66(12), 10732–10747 (2017).
[Crossref]

Tang, J.

L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers,” IEEE Trans. Veh. Tech. 167(7), 2108–2117 (2018).
[Crossref]

Tang, X.

X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative MIMO relaying systems,” IEEE Trans. Veh. Tech. 67(3), 2035–2048 (2018).

Thang, T. C.

D. A. Luong, T. C. Thang, and A. T. Pham, “FEffect of avalanche photodiode and thermal noises on the performance of binary phase-shift keying-subcarrier-intensity modulation/free-space optical systems over turbulence channels,” IET Commun.,  7(8), 738–744 (2013).
[Crossref]

Tourki, K.

A. Mabrouk, A. E. Shafie, K. Tourki, and N. Al-Dhahir, “Adaptive secure transmission for RF-EH untrusted relaying with alien eavesdropping,” IEEE Commun. Lett. 21(11), 2516–2519 (2017).
[Crossref]

Tsang, W. W.

G. Marsaglia and W. W. Tsang, “A simple method for generating gamma variables,” ACM T. Math. Software (TOMS),  26(3), 363–372 (2000).
[Crossref]

Tsiftsis, T. A.

T. Mekkawy, R. Yao, T. A. Tsiftsis, F. Xu, and Y. Lu, “Joint beamforming alignment with suboptimal power allocation for a two way untrusted relay network,” IEEE Trans. Inf. Forensics Secur. 13(10), 2464–2474 (2018).

H. Liu, K. J. Kim, T. A. Tsiftsis, K. S. Kwak, and H. V. Poor, “Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls,” IEEE Trans. Signal Process. 65(23), 6185–6200 (2017).
[Crossref]

Tuan, H. D.

T. M. Hoang, T. Q. Duong, H. D. Tuan, and H. V. Poor, “Secure massive MIMO relaying systems in a poisson field of eavesdroppers,” IEEE Trans. Commun. 675(11), 4857–24870 (2017).
[Crossref]

Usman, M.

M. Usman, H. Yang, and M.-S. Alouini, “Practical switching-based hybrid FSO/RF transmission and its performance analysis,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

Wang, D.

D. Wang, P. Ren, and J. Cheng, “Cooperative secure communication in two-hop buffer-aided networks,” IEEE Trans. Commun. 66(3), 972–2985 (2018).
[Crossref]

D. Wang, P. Ren, J. Cheng, and Y. Wang, “Achieving full secrecy rate with energy-efficient transmission control,” IEEE Trans. Commun. 65(12), 5386–5400 (2017).
[Crossref]

D. Wang, P. Ren, Q. Du, L. Sun, and Y. Wang, “Security provisioning for MISO vehicular relay networks via cooperative jamming and signal superposition,” IEEE Trans. Veh. Tech. 66(12), 10732–10747 (2017).
[Crossref]

Wang, W.

R. Zhao, Y. Huang, W. Wang, and V. K. N. Lau, “Ergodic achievable secrecy rate of multiple-antenna relay systems with cooperative jamming,” IEEE Trans. Wireless Commun. 15(4), 26537–2551 (2016).
[Crossref]

Wang, Y.

D. Wang, P. Ren, Q. Du, L. Sun, and Y. Wang, “Security provisioning for MISO vehicular relay networks via cooperative jamming and signal superposition,” IEEE Trans. Veh. Tech. 66(12), 10732–10747 (2017).
[Crossref]

D. Wang, P. Ren, J. Cheng, and Y. Wang, “Achieving full secrecy rate with energy-efficient transmission control,” IEEE Trans. Commun. 65(12), 5386–5400 (2017).
[Crossref]

Wen, H.

L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers,” IEEE Trans. Veh. Tech. 167(7), 2108–2117 (2018).
[Crossref]

Wong, K.

H. Xing, K. Wong, A. Nallanathan, and R. Zhang, “Wireless powered cooperative jamming for secrecy multi-AF relaying networks,” IEEE Trans. Wireless Commun. 15(12), 7971–7984 (2016).
[Crossref]

Wu, B.

L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers,” IEEE Trans. Veh. Tech. 167(7), 2108–2117 (2018).
[Crossref]

Wu, H.-C.

Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Commun.,  18(2), 66–74 (2011).
[Crossref]

Wyner, A. D.

A. D. Wyner, “The wire-tap channel, ” Bell Syst. Tech. J.,  54(8), 1335–1387 (1975).
[Crossref]

Xing, H.

H. Xing, K. Wong, A. Nallanathan, and R. Zhang, “Wireless powered cooperative jamming for secrecy multi-AF relaying networks,” IEEE Trans. Wireless Commun. 15(12), 7971–7984 (2016).
[Crossref]

Xu, F.

T. Mekkawy, R. Yao, T. A. Tsiftsis, F. Xu, and Y. Lu, “Joint beamforming alignment with suboptimal power allocation for a two way untrusted relay network,” IEEE Trans. Inf. Forensics Secur. 13(10), 2464–2474 (2018).

Xu, W.

L. Kong, W. Xu, L. Hanzo, H. Zhang, and C. Zhao, “Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels,” IEEE Photonics J. 7(5), 1–20 (2015).
[Crossref]

Yang, H.

T. Rakia, H. Yang, M.-S. Alouini, and F. Gebali, “Outage analysis of practical FSO/RF hybrid system with adaptive combining,” IEEE Commun. Lett.,  19(8), 1366–1369 (2015).
[Crossref]

M. Usman, H. Yang, and M.-S. Alouini, “Practical switching-based hybrid FSO/RF transmission and its performance analysis,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

Yang, N.

L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis, “Secrecy cooperative networks with outdated relay selection over correlated fading channels,” IEEE Trans. Veh. Tech. 66(8), 7599–7603 (2017).
[Crossref]

Yang, W.

X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative MIMO relaying systems,” IEEE Trans. Veh. Tech. 67(3), 2035–2048 (2018).

X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative MIMO relaying systems,” IEEE Trans. Veh. Tech. 67(3), 2035–2048 (2018).

Yanikomeroglu, H.

M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M.-S. Alouini, “Optical wireless: The story so far,” IEEE Commun. Mag. 36(12), 72–74 (1988).

Yao, R.

T. Mekkawy, R. Yao, T. A. Tsiftsis, F. Xu, and Y. Lu, “Joint beamforming alignment with suboptimal power allocation for a two way untrusted relay network,” IEEE Trans. Inf. Forensics Secur. 13(10), 2464–2474 (2018).

Zedini, E.

E. Zedini, H. Soury, and M.-S. Alouini, “On the performance analysis of dual-hop mixed FSO/RF systems,” IEEE Trans. Wireless Commun. 15(5), 3679–3689 (2016).
[Crossref]

Zhai, D.

D. Zhai, R. Zhang, L. Cai, B Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for NOMA based wireless networks with massive IoT devices,” IEEE Int. Things,  5(3), 1857–1868 (2018).
[Crossref]

Zhang, H.

L. Kong, W. Xu, L. Hanzo, H. Zhang, and C. Zhao, “Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels,” IEEE Photonics J. 7(5), 1–20 (2015).
[Crossref]

Zhang, R.

D. Zhai, R. Zhang, L. Cai, B Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for NOMA based wireless networks with massive IoT devices,” IEEE Int. Things,  5(3), 1857–1868 (2018).
[Crossref]

H. Xing, K. Wong, A. Nallanathan, and R. Zhang, “Wireless powered cooperative jamming for secrecy multi-AF relaying networks,” IEEE Trans. Wireless Commun. 15(12), 7971–7984 (2016).
[Crossref]

Zhao, C.

L. Kong, W. Xu, L. Hanzo, H. Zhang, and C. Zhao, “Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels,” IEEE Photonics J. 7(5), 1–20 (2015).
[Crossref]

Zhao, R.

R. Zhao, Y. Huang, W. Wang, and V. K. N. Lau, “Ergodic achievable secrecy rate of multiple-antenna relay systems with cooperative jamming,” IEEE Trans. Wireless Commun. 15(4), 26537–2551 (2016).
[Crossref]

Zummo, S. A.

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Effect of RF interference on the security-reliability tradeoff analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightwave Technol. 35(9), 1490–1505 (2017).
[Crossref]

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling,” IEEE Trans. Wireless Commun. 15(9), 5904–5918 (2016).
[Crossref]

ACM T. Math. Software (TOMS) (1)

G. Marsaglia and W. W. Tsang, “A simple method for generating gamma variables,” ACM T. Math. Software (TOMS),  26(3), 363–372 (2000).
[Crossref]

Bell Syst. Tech. J. (1)

A. D. Wyner, “The wire-tap channel, ” Bell Syst. Tech. J.,  54(8), 1335–1387 (1975).
[Crossref]

Comput. Stat. Data Anal. (1)

D. Kundu and R. D. Gupta, “A convenient way of generating gamma random variables using generalized exponential distribution,” Comput. Stat. Data Anal.,  51(6), 2796–72802 (2007).
[Crossref]

IEEE Commun. Lett. (2)

A. Mabrouk, A. E. Shafie, K. Tourki, and N. Al-Dhahir, “Adaptive secure transmission for RF-EH untrusted relaying with alien eavesdropping,” IEEE Commun. Lett. 21(11), 2516–2519 (2017).
[Crossref]

T. Rakia, H. Yang, M.-S. Alouini, and F. Gebali, “Outage analysis of practical FSO/RF hybrid system with adaptive combining,” IEEE Commun. Lett.,  19(8), 1366–1369 (2015).
[Crossref]

IEEE Commun. Mag. (2)

M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M.-S. Alouini, “Optical wireless: The story so far,” IEEE Commun. Mag. 36(12), 72–74 (1988).

B. Epple and H. Henniger, “Discussion on design aspects for free-space optical communication terminals,” IEEE Commun. Mag. 42(10), 62–69 (2007).
[Crossref]

IEEE Int. Things (1)

D. Zhai, R. Zhang, L. Cai, B Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for NOMA based wireless networks with massive IoT devices,” IEEE Int. Things,  5(3), 1857–1868 (2018).
[Crossref]

IEEE J. Sel. Areas Commun. (2)

Y. Liang, H. O. Mazen, and X. Gao, “Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels,” IEEE J. Sel. Areas Commun.,  33(9), 1913–1924 (2015).
[Crossref]

T. D. Goran, I. P. Milica, M. C. Aleksandra, and G. K. Karagiannidis, “Mixed RF/FSO relaying with outdated channel state information,” IEEE J. Sel. Areas Commun.,  33(9), 1935–1948 (2015).
[Crossref]

IEEE Photonics J. (4)

L. Kong, W. Xu, L. Hanzo, H. Zhang, and C. Zhao, “Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels,” IEEE Photonics J. 7(5), 1–20 (2015).
[Crossref]

M. Usman, H. Yang, and M.-S. Alouini, “Practical switching-based hybrid FSO/RF transmission and its performance analysis,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

H. Lei, Z. Dai, I. Shaflque, K. -H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance of mixed RF-FSO systems,” IEEE Photonics J. 9(4), 1–15 (2017).
[Crossref]

H. Lei, H. Luo, K. -H. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photonics J. 10(3), 1–14 (2018).
[Crossref]

IEEE Trans. Commun. (5)

B. He and R. Schober, “Bit-interleaved coded modulation for hybrid RF/FSO systems,” IEEE Trans. Commun.,  62(2), 713–725 (2014).

A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Hybrid radio/free-space optical design for next generation backhaul systems,” IEEE Trans. Commun. 64(6), 2563–2577 (2016).
[Crossref]

D. Wang, P. Ren, and J. Cheng, “Cooperative secure communication in two-hop buffer-aided networks,” IEEE Trans. Commun. 66(3), 972–2985 (2018).
[Crossref]

T. M. Hoang, T. Q. Duong, H. D. Tuan, and H. V. Poor, “Secure massive MIMO relaying systems in a poisson field of eavesdroppers,” IEEE Trans. Commun. 675(11), 4857–24870 (2017).
[Crossref]

D. Wang, P. Ren, J. Cheng, and Y. Wang, “Achieving full secrecy rate with energy-efficient transmission control,” IEEE Trans. Commun. 65(12), 5386–5400 (2017).
[Crossref]

IEEE Trans. Inf. Forensics Secur. (2)

J. Choi, “Physical layer security for channel-aware random access with opportunistic jammings,” IEEE Trans. Inf. Forensics Secur. 12(11), 2699–2711 (2017).
[Crossref]

T. Mekkawy, R. Yao, T. A. Tsiftsis, F. Xu, and Y. Lu, “Joint beamforming alignment with suboptimal power allocation for a two way untrusted relay network,” IEEE Trans. Inf. Forensics Secur. 13(10), 2464–2474 (2018).

IEEE Trans. Signal Process. (1)

H. Liu, K. J. Kim, T. A. Tsiftsis, K. S. Kwak, and H. V. Poor, “Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls,” IEEE Trans. Signal Process. 65(23), 6185–6200 (2017).
[Crossref]

IEEE Trans. Veh. Tech. (4)

X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative MIMO relaying systems,” IEEE Trans. Veh. Tech. 67(3), 2035–2048 (2018).

L. Fan, X. Lei, N. Yang, T. Q. Duong, and G. K. Karagiannidis, “Secrecy cooperative networks with outdated relay selection over correlated fading channels,” IEEE Trans. Veh. Tech. 66(8), 7599–7603 (2017).
[Crossref]

L. Hu, H. Wen, B. Wu, J. Tang, F. Pan, and R. Liao, “Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers,” IEEE Trans. Veh. Tech. 167(7), 2108–2117 (2018).
[Crossref]

D. Wang, P. Ren, Q. Du, L. Sun, and Y. Wang, “Security provisioning for MISO vehicular relay networks via cooperative jamming and signal superposition,” IEEE Trans. Veh. Tech. 66(12), 10732–10747 (2017).
[Crossref]

IEEE Trans. Wireless Commun. (5)

R. Zhao, Y. Huang, W. Wang, and V. K. N. Lau, “Ergodic achievable secrecy rate of multiple-antenna relay systems with cooperative jamming,” IEEE Trans. Wireless Commun. 15(4), 26537–2551 (2016).
[Crossref]

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling,” IEEE Trans. Wireless Commun. 15(9), 5904–5918 (2016).
[Crossref]

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors, ” IEEE Trans. Wireless Commun.,  14(8), 4248–4264 (2015).
[Crossref]

E. Zedini, H. Soury, and M.-S. Alouini, “On the performance analysis of dual-hop mixed FSO/RF systems,” IEEE Trans. Wireless Commun. 15(5), 3679–3689 (2016).
[Crossref]

H. Xing, K. Wong, A. Nallanathan, and R. Zhang, “Wireless powered cooperative jamming for secrecy multi-AF relaying networks,” IEEE Trans. Wireless Commun. 15(12), 7971–7984 (2016).
[Crossref]

IEEE Wirel. Commun. (1)

H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M.-S. Alouini, “Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems,” IEEE Wirel. Commun. 22(5), 98–104 (2015).
[Crossref]

IEEE Wireless Commun. (1)

Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Commun.,  18(2), 66–74 (2011).
[Crossref]

IET Commun. (1)

D. A. Luong, T. C. Thang, and A. T. Pham, “FEffect of avalanche photodiode and thermal noises on the performance of binary phase-shift keying-subcarrier-intensity modulation/free-space optical systems over turbulence channels,” IET Commun.,  7(8), 738–744 (2013).
[Crossref]

J. Lightw. Technol. (1)

A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” J. Lightw. Technol.,  25(7), 1702–1710 (2007).
[Crossref]

J. Lightwave Technol. (1)

Other (1)

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed., (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The system model for the proposed link adaptation secure scheme.
Fig. 2
Fig. 2 The secrecy outage probability versus Alice’s transmit power pa,f.
Fig. 3
Fig. 3 The average secrecy rate versus Alice’s transmit power pa,f.
Fig. 4
Fig. 4 The secrecy outage probability versus the target transmission rate Rb.
Fig. 5
Fig. 5 The average secrecy rate versus the target transmission rate Rb.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

f h fso ( γ ) = ξ 2 Γ ( α ) Γ ( β ) γ G 1 , 3 3 , 0 ( ξ 2 α β μ ( ξ 2 + 1 ) γ | ξ 2 + 1 ξ 2 , α , β )
F h fso ( γ ) = ξ 2 Γ ( α ) Γ ( β ) G 2 , 4 3 , 1 ( ξ 2 α β μ ( ξ 2 + 1 ) γ | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ) .
y 1 = p a , f h fso x 1 + n 1
γ 1 = p a , f h fso N 0 , f
R 1 = log 2 ( 1 + p a , f h fso N 0 , f ) .
y 2 = p a , r h rf x 2 + n 2
γ 2 = p a , r g rf N 0 , r
R 2 = log 2 ( 1 + p a , r g rf N 0 , r ) .
y e = p a , r h e x 2 + n e
γ e = p a , r g e N 0 , r
R e = log 2 ( 1 + p a , r g e N 0 , r ) .
R sec = ( R 2 R e ) +
R 1 = log 2 ( 1 + γ 1 ) R b γ 1 γ T = 2 R b 1 .
R 2 = log 2 ( 1 + γ 2 ) R b γ 2 γ T = 2 R b 1 .
P sec , o = Pr ( R sec = ( R 2 R e ) + < R s ) = Pr ( ( R 2 R s ) < log 2 ( 1 + p a , r g e N 0 , r ) ) = Pr ( N 0 , r ( 2 ( R 2 R s ) 1 ) p a , r < g e ) = exp ( N 0 , r ( 2 ( R 2 R s ) 1 ) p a , r λ e ) .
P sec , o P sec , o max g rf τ = N 0 , r ( 2 ( R s + log 2 ( 1 p a , r λ e ln P sec , o max N 0 , r ) ) 1 ) p a , r .
R ¯ e = 𝔼 { log 2 ( 1 + p a , r g e N 0 , r ) } = ( a ) λ e exp ( N 0 , r λ e p a , r ) E i ( N 0 , r λ e p a , r )
P fso f = Pr ( R 1 R b ) = Pr ( h fso N 0 , f ( 2 R b 1 ) p a , f ) = 1 ξ 2 Γ ( α ) Γ ( β ) G 2 , 4 3 , 1 [ α β h ( N 0 , f ( 2 R b 1 ) μ p a , f ) | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ]
P rf f = ( 1 P fso f ) Pr ( g rf max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) ) = ξ 2 Γ ( α ) Γ ( β ) G 2 , 4 3 , 1 [ α β h ( N 0 , f ( 2 R b 1 ) μ p a , f ) | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] = × exp ( 1 λ rf max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) ) .
R sec rf = ( R 2 R ¯ e ) + .
R sec f = P fso r R 1 + P rf f R sec rf = ( 1 ξ 2 Γ ( α ) Γ ( β ) G 2 , 4 3 , 1 [ α β h ( N 0 , f ( 2 R b 1 ) μ p a , f ) | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] ) log 2 ( 1 + p a , f h fso N 0 , f ) + ξ 2 Γ ( α ) Γ ( β ) G 2 , 4 3 , 1 [ α β h N 0 , f ( 2 R b 1 ) μ p a , f | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] exp ( 1 λ rf max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) ) ( log 2 ( 1 + p a , f g rf N 0 , f ) + λ e exp ( N 0 , f λ e p a , f ) E i ( N 0 , f λ e p a , f ) ) .
P fso s = Pr ( γ 1 γ T , g rf max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) , R 1 ( R 2 R ¯ e ) ) + Pr ( γ 1 γ T , g rf < max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) ) = Pr ( h fso g rf 2 R ¯ e p a , r N 0 , f p a , f N 0 , r + N 0 , f ( 2 R ¯ e 1 ) p a , f , h fso N 0 , f ( 2 R b 1 ) p a , f p a , g rf max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) ) I 1 + Pr ( h fso N 0 , f ( 2 R b 1 ) p a , f , g rf < max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) ) I 2 .
I 1 = max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) ξ 2 Γ ( α ) Γ ( β ) 1 λ rf exp ( x λ rf ) × G 2 , 4 3 , 1 [ α β h ( max ( x 2 R ¯ e p a , r N 0 , f p a , f N 0 , r + N 0 , f ( 2 R ¯ e 1 ) p a , f , N 0 , f ( 2 R b 1 ) p a , f p a ) μ ) | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] d x = ξ 2 Γ ( α ) Γ ( β ) G 2 , 4 3 , 1 [ α β h ( N 0 , f ( 2 R b 1 ) p a , f p a ) | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] × ( exp ( max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) λ rf ) exp ( N 0 , r ( 2 R b + R ¯ e 1 ) p a , r λ rf ) ) + max ( N 0 , r ( 2 R b + R ¯ e 1 ) p a , r , τ ) G 2 , 4 3 , 1 [ α β h ( x 2 R ¯ e p a , r N 0 , f p a , f N 0 , r + N 0 , f ( 2 R ¯ e 1 ) p a , f μ ) | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] × ξ 2 Γ ( α ) Γ ( β ) 1 λ rf exp ( x λ rf ) d x ξ 2 Γ ( α ) Γ ( β ) G 2 , 4 3 , 1 [ α β h ( N 0 , f ( 2 R b 1 ) p a , f p a ) | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] × ( exp ( max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) λ rf ) exp ( N 0 , r ( 2 R b + R ¯ e 1 ) p a , r λ rf ) ) + λ rf ξ 2 Γ ( α ) Γ ( β ) exp ( 1 λ rf max ( N 0 , r ( 2 R b + R ¯ e 1 ) p a , r , τ ) ) × G 4 , 3 3 , 2 [ 2 R ¯ e α β h λ rf p a , r N 0 , f μ p a , f N 0 , r | 1 , 0 , ξ 2 + 1 ξ 2 , α , β , 0 ] .
I 2 = ( 1 G 2 , 4 3 , 1 [ α β h N 0 , f ( 2 R b 1 ) μ p a , f | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] ) × ( 1 exp ( max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) λ rf ) ) .
P rf s = Pr ( γ 1 γ T , g rf max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) , R 1 < ( R s R ¯ e ) ) + Pr ( γ 1 < γ T , g rf max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) ) = Pr ( N 0 , f ( 2 R b 1 ) p a , f p a h fso < g rf 2 R ¯ e p a , r N 0 , f p a , f N 0 , r + N 0 , f ( 2 R ¯ e 1 ) p a , f , g rf max ( N 0 , r ( 2 R ¯ b 1 ) p a , r , τ ) ) I 3 + Pr ( h fso < N 0 , f ( 2 R b 1 ) p a , f p a , g rf max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) ) I 4 .
I 3 × ( 1 exp ( max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) λ rf ) ) = ξ 2 Γ ( α ) Γ ( β ) G 2 , 4 3 , 1 [ α β h ( N 0 , f ( 2 R b 1 ) p a , f p a ) | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] × ( exp ( max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) λ rf ) exp ( N 0 , r ( 2 R b + R ¯ e 1 ) p a , r λ rf ) ) + λ rf ξ 2 Γ ( α ) Γ ( β ) exp ( 1 λ rf max ( N 0 , r ( 2 R b + R ¯ e 1 ) p a , r , τ ) ) × G 4 , 3 3 , 2 [ 2 R ¯ e α β h λ rf p a , r N 0 , f μ p a , f N 0 , r | 1 , 0 , ξ 2 + 1 ξ 2 , α , β , 0 ] G 2 , 4 3 , 1 [ α β h N 0 , f ( 2 R b 1 ) p a , f p a | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] × exp ( max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) λ rf ) ξ 2 Γ ( α ) Γ ( β ) .
I 4 = = ( G 2 , 4 3 , 1 [ α β h N 0 , f ( 2 R b 1 ) μ p a , f | 1 , ξ 2 + 1 ξ 2 , α , β , 0 ] ) × ( exp ( max ( N 0 , r ( 2 R b 1 ) p a , r , τ ) λ rf ) ) .
R sec s = P fso s R 1 + P rf s R sec rf = I 1 I 2 log 2 ( 1 + p a , f h fso N 0 , f ) + I 3 I 4 ( log 2 ( 1 + p a , r g rf N 0 , r ) + λ e exp ( N 0 , r λ e p a , r ) E i ( N 0 , r λ e p a , f ) ) .

Metrics