Abstract

In this work we measure the frequency dependent transfer function of the amplitude noise for both the seed and pump power in an Yb3+-doped fiber amplifier chain. In particular, the relative intensity noise transfer function of this amplifier chain in the frequency range of 10 Hz – 100 kHz has been investigated. It is shown that the pump power noise of the pre-amplifier stages is transformed into seed power noise for the next amplification stage. Crucially, the seed power noise in the frequency range of interest is strongly damped by the main-amplifier. This, however, does not happen for the pump power noise. Thus, the noise of the pump of the last amplifier stage is the factor with the strongest impact on the overall noise level of the system. Finally, useful guidelines to minimize the output amplitude noise of an Yb3+-doped fiber amplifier chain are given.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control

Jian Zhao, Germain Guiraud, Florian Floissat, Benoit Gouhier, Sergio Rota-Rodrigo, Nicholas Traynor, and Giorgio Santarelli
Opt. Express 25(1) 357-366 (2017)

Power- and frequency-noise characteristics of an Yb-doped fiber amplifier and actuators for stabilization

Michael Tröbs, Peter Weßels, and Carsten Fallnich
Opt. Express 13(6) 2224-2235 (2005)

Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers

M. Steinke, J. Neumann, D. Kracht, and P. Wessels
Opt. Express 23(11) 14946-14959 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
    [Crossref]
  3. G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
    [Crossref] [PubMed]
  4. D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
    [Crossref] [PubMed]
  5. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Frequency resolved analysis of thermally induced refractive index changes in fiber amplifiers,” Opt. Lett. 37(17), 3597–3599 (2012).
    [Crossref] [PubMed]
  6. C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
    [Crossref] [PubMed]
  7. C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
    [Crossref]
  8. S. Novak and A. Moesle, “Analytic Model for Gain Modulation in EDFAs,” J. Lit. Technol. 20(6), 975–985 (2002).
    [Crossref]
  9. J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357–366 (2017).
    [Crossref] [PubMed]
  10. B. Ortac, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express 15(23), 15595–15602 (2007).
    [Crossref] [PubMed]
  11. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539–13550 (2012).
    [Crossref] [PubMed]
  12. M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er(3+):Yb(+) co-doped fiber amplifiers,” Opt. Express 23(11), 14946–14959 (2015).
    [Crossref] [PubMed]

2018 (2)

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref] [PubMed]

2017 (2)

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357–366 (2017).
[Crossref] [PubMed]

2015 (1)

2013 (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (2)

2007 (2)

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

B. Ortac, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express 15(23), 15595–15602 (2007).
[Crossref] [PubMed]

2002 (1)

S. Novak and A. Moesle, “Analytic Model for Gain Modulation in EDFAs,” J. Lit. Technol. 20(6), 975–985 (2002).
[Crossref]

1992 (1)

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Behringer, R. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Berggren, K. K.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Booker, P.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Cunningham, J. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

de Varona, O.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Emaury, F.

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

Floissat, F.

Gouhier, B.

Guiraud, G.

Jahn, P.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Jauregui, C.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref] [PubMed]

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Karow, M.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Keller, U.

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

Kienel, M.

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

Kim, D. I.

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Kracht, D.

Kuhn, V.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Lee, Y. W.

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Limpert, J.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref] [PubMed]

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

B. Ortac, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express 15(23), 15595–15602 (2007).
[Crossref] [PubMed]

Moesle, A.

S. Novak and A. Moesle, “Analytic Model for Gain Modulation in EDFAs,” J. Lit. Technol. 20(6), 975–985 (2002).
[Crossref]

Müller, M.

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

Neumann, J.

Novak, S.

S. Novak and A. Moesle, “Analytic Model for Gain Modulation in EDFAs,” J. Lit. Technol. 20(6), 975–985 (2002).
[Crossref]

Ortac, B.

Plötner, M.

Prentiss, M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Rhee, H. G.

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Rota-Rodrigo, S.

Santarelli, G.

Saraceno, C.

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

Schreiber, T.

Song, J. B.

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Steinke, M.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er(3+):Yb(+) co-doped fiber amplifiers,” Opt. Express 23(11), 14946–14959 (2015).
[Crossref] [PubMed]

Stihler, C.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref] [PubMed]

Tennant, D. M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Theeg, T.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Timp, G.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Traynor, N.

Tünnermann, A.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref] [PubMed]

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

B. Ortac, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express 15(23), 15595–15602 (2007).
[Crossref] [PubMed]

Tünnermann, H.

Wesels, P.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Wessels, P.

Weßels, P.

Zhao, J.

IEEE J. Sel. Top. Quantum Electron. (1)

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

J. Lit. Technol. (1)

S. Novak and A. Moesle, “Analytic Model for Gain Modulation in EDFAs,” J. Lit. Technol. 20(6), 975–985 (2002).
[Crossref]

Light Sci. Appl. (1)

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7(1), 59 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Proc. SPIE (1)

C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. Saraceno, J. Limpert, U. Keller, and A. Tünnermann, “Optimizing the noise characteristics of high-power fiber laser systems,” Proc. SPIE 10083, 100830W (2017).
[Crossref]

Rev. Sci. Instrum. (1)

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the complete setup comprising the oscillator and two amplification stages with their respective seed and pump power controls. WDM: wavelength division multiplexer, Yb: Ytterbium doped active fiber, TAP: tap coupler, ISO: optical isolator, LPD: laser pump diode, AOM: acousto optical modulator, PD: photodiode, PM: power meter.
Fig. 2
Fig. 2 Measurement results for the power spectral density (top) and the integrated power spectral density (bottom) of the modulated seed signal (input signal, green line) together with the corresponding output signal after amplification through one amplifier stage (blue line). The black line depicts the dark current of the photodiode.
Fig. 3
Fig. 3 Measured RIN-transfer-function for seed (left) and pump power modulations (right), after propagation through one amplification stage. Dots represent the measured data and solid lines are fit functions used to guide the eye (i.e. they have no physical meaning in themselves). The black graph shows the case in which the amplifier is transparent and the red graph shows the case for the highest possible gain in our systems.
Fig. 4
Fig. 4 Average values of the integrated power spectral density of the amplifier chain without artificial amplitude modulations (of the seed or pump power). The top diagram depicts the case in which the pre-amplifier is transparent and the bottom diagram shows the case in which both amplifiers provide gain. Black lines represent the data obtained at the oscillator output, red lines at the pre-amplifier output and blue lines at the main-amplifier output.
Fig. 5
Fig. 5 Schematic setup of the amplifier chain for seed power modulations (PD: photodiode, AOM: acousto-optical modulator) (a). Results for transparent pre-amplifier (b) and pre- amplifier operated at highest gain (c). The dots represent the measured data and the solid lines are fit functions to guide the eye. The black graphs represent the RIN-transfer function through the pre-amplifier (PD1 to PD2), the red graph represent the RIN-transfer function through the main-amplifier (PD2 to PD3) and the blue graph represents the RIN-transfer function through the complete amplifier chain (PD1 to PD3).
Fig. 6
Fig. 6 Schematic setup of the amplifier chain used to study the pump RIN-transfer function of the different amplification stages (PD: photodiode, AOM: acousto-optical modulator) (a). The diagrams show the results for the RIN-transfer function of the pre-amplifier pump (b-c) and of the main-amplifier pump (d-e). The left hand diagrams represent the outcomes when the system is configured in such a way that the pre-amplifier works in transparency and the right hand ones show the results when both the pre- and the man amplifier have gain.

Tables (1)

Tables Icon

Table 1 Measurement parameters

Metrics