Abstract

In this paper, we report on the realization of optomechanics and its broad tuning in liquid crystal-filled micro-bubble resonators (LC-MBR). Acoustic anisotropy of LC has enriched optomechanical resonant modes in such whispering-gallery modes (WGM) cavities. Meanwhile anisotropic dependence of sound speed of LC on temperature strongly enhances the tuning ability of the resonances. By applying magnetic field to control re-orientation of LC in MBR, optomechanical resonant frequency changes significantly after magnetic field goes beyond Fréedericksz transition threshold. By designing such an optomachanical system, optomechanical oscillator with broad tuning range can be realized.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
2-D optical/opto-mechanical microfluidic sensing with micro-bubble resonators

Zhenmin Chen, Ming Li, Xiang Wu, Liying Liu, and Lei Xu
Opt. Express 23(14) 17659-17664 (2015)

Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal

Vishnu Kavungal, Gerald Farrell, Qiang Wu, Arun Kumar Mallik, and Yuliya Semenova
Opt. Express 26(7) 8431-8442 (2018)

Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators

Alexandr Jonáš, Zdeněk Pilát, Jan Ježek, Silvie Bernatová, Tomáš Fořt, Pavel Zemánek, Mehdi Aas, and Alper Kiraz
J. Opt. Soc. Am. B 34(9) 1855-1864 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
    [Crossref] [PubMed]
  2. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
    [Crossref] [PubMed]
  3. Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
    [Crossref]
  4. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
    [Crossref]
  5. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013).
    [Crossref] [PubMed]
  6. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
    [Crossref] [PubMed]
  7. K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X.D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl.  2, 1038 (2013).
  8. K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
    [Crossref]
  9. Y. Deng, F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21(4), 4653–4664 (2013).
    [Crossref] [PubMed]
  10. Z. Chen, M. Li, X. Wu, L. Liu, and L. Xu, “2-D optical/opto-mechanical microfluidic sensing with micro-bubble resonators,” Opt. Express 23(14), 17659–17664 (2015).
    [Crossref] [PubMed]
  11. J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
  12. J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using Brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
    [Crossref]
  13. H. Herba and A. Drzymała, “Anisotropic attenuation of acoustic waves in nematic liquid crystals,” Liq. Cryst. 8(6), 819–823 (1990).
    [Crossref]
  14. P. G. De Gennes and J. Prost, the Physics of Liquid Crystals (Oxford University, 1993).
  15. I. Musevic, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4(1), 1–34 (2016).
    [Crossref]
  16. M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43(13–15), 1937–1950 (2016).
    [Crossref]
  17. M. Humar, M. Ravnik, S. Pajk, and I. Muševic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
    [Crossref]
  18. V. Kavungal, G. Farrell, Q. Wu, A. K. Mallik, and Y. Semenova, “Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal,” Opt. Express 26(7), 8431–8442 (2018).
    [Crossref] [PubMed]
  19. M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
    [Crossref] [PubMed]
  20. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
    [Crossref] [PubMed]
  21. K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
    [Crossref] [PubMed]
  22. Z. H. Zhou, C. L. Zou, Y. Chen, Z. Shen, G. C. Guo, and C. H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25(4), 4046–4053 (2017).
    [Crossref] [PubMed]
  23. S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc. 39(3), 113–118 (1956).
    [Crossref]
  24. I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
    [Crossref] [PubMed]
  25. T. Tang, X. Wu, L. Liu, and L. Xu, “Packaged optofluidic microbubble resonators for optical sensing,” Appl. Opt. 55(2), 395–399 (2016).
    [Crossref] [PubMed]
  26. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46(3), 389–396 (2007).
    [Crossref] [PubMed]
  27. T. Leon and A. Nieves, “Drops and shells of liquid crystal,” Colloid Polym. Sci. 289(4), 345–359 (2011).
    [Crossref]
  28. I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
    [Crossref] [PubMed]
  29. H. Lamb, “On the vibrations of a spherical shell,” Proc. Lond. Math. Soc. 1(1), 50–56 (1882).
    [Crossref]
  30. R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
    [Crossref]
  31. K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
    [Crossref]
  32. Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Temperature dependence of acoustical relaxation times involving the vicinity of NI phase transition point in 5CB LC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 183–202 (2001).
    [Crossref]
  33. Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Rheological properties of LC 4-pentyl 4-cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 91–100 (2001).
    [Crossref]
  34. J.-H. Ko, Y. H. Hwang, and J.-H. Kim, “Sound propagation in 5CB liquid crystals homogeneously confined in a olanar cell,” J. Inf. Disp. 10(2), 72–75 (2009).
    [Crossref]
  35. H. Herba, A. Szymanski, and A. Drzymała, “Experimental test of hydrodynamic theories for nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 127(1), 153–158 (1985).
    [Crossref]
  36. J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
    [Crossref]
  37. M. Hasan, D. F. Shirude, A. P. Hiray, U. B. Kadam, and A. B. Sawant, “Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and313.15) K,” J. Chem. Eng. Data 51(5), 1922–1926 (2006).
    [Crossref]
  38. E. Nishikawa, H. Finkelmann, and H. R. Brand, “Smectic A liquid single crystal elastomers showing macroscopic in-plane fluidity,” Macromol. Rapid Commun. 18(2), 65–71 (1997).
    [Crossref]
  39. V. Bondar, O. Lavrentovich, and V. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74(1), 60–67 (1992).
  40. C. H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
    [Crossref]

2018 (1)

2017 (3)

2016 (4)

T. Tang, X. Wu, L. Liu, and L. Xu, “Packaged optofluidic microbubble resonators for optical sensing,” Appl. Opt. 55(2), 395–399 (2016).
[Crossref] [PubMed]

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
[Crossref]

I. Musevic, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4(1), 1–34 (2016).
[Crossref]

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43(13–15), 1937–1950 (2016).
[Crossref]

2015 (2)

Z. Chen, M. Li, X. Wu, L. Liu, and L. Xu, “2-D optical/opto-mechanical microfluidic sensing with micro-bubble resonators,” Opt. Express 23(14), 17659–17664 (2015).
[Crossref] [PubMed]

C. H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

2014 (3)

K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (4)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using Brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

2011 (3)

T. Leon and A. Nieves, “Drops and shells of liquid crystal,” Colloid Polym. Sci. 289(4), 345–359 (2011).
[Crossref]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

2010 (2)

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

2009 (2)

M. Humar, M. Ravnik, S. Pajk, and I. Muševic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

J.-H. Ko, Y. H. Hwang, and J.-H. Kim, “Sound propagation in 5CB liquid crystals homogeneously confined in a olanar cell,” J. Inf. Disp. 10(2), 72–75 (2009).
[Crossref]

2007 (1)

2006 (2)

M. Hasan, D. F. Shirude, A. P. Hiray, U. B. Kadam, and A. B. Sawant, “Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and313.15) K,” J. Chem. Eng. Data 51(5), 1922–1926 (2006).
[Crossref]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

2005 (1)

2001 (2)

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Temperature dependence of acoustical relaxation times involving the vicinity of NI phase transition point in 5CB LC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 183–202 (2001).
[Crossref]

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Rheological properties of LC 4-pentyl 4-cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 91–100 (2001).
[Crossref]

1997 (1)

E. Nishikawa, H. Finkelmann, and H. R. Brand, “Smectic A liquid single crystal elastomers showing macroscopic in-plane fluidity,” Macromol. Rapid Commun. 18(2), 65–71 (1997).
[Crossref]

1992 (1)

V. Bondar, O. Lavrentovich, and V. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74(1), 60–67 (1992).

1990 (1)

H. Herba and A. Drzymała, “Anisotropic attenuation of acoustic waves in nematic liquid crystals,” Liq. Cryst. 8(6), 819–823 (1990).
[Crossref]

1985 (1)

H. Herba, A. Szymanski, and A. Drzymała, “Experimental test of hydrodynamic theories for nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 127(1), 153–158 (1985).
[Crossref]

1956 (1)

S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc. 39(3), 113–118 (1956).
[Crossref]

1882 (1)

H. Lamb, “On the vibrations of a spherical shell,” Proc. Lond. Math. Soc. 1(1), 50–56 (1882).
[Crossref]

Abbott, N. L.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

Alaie, S.

Aliokhin, O.

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Temperature dependence of acoustical relaxation times involving the vicinity of NI phase transition point in 5CB LC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 183–202 (2001).
[Crossref]

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Rheological properties of LC 4-pentyl 4-cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 91–100 (2001).
[Crossref]

Bahl, G.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref] [PubMed]

K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X.D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl.  2, 1038 (2013).

Bertics, P. J.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Bondar, V.

V. Bondar, O. Lavrentovich, and V. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74(1), 60–67 (1992).

Brand, H. R.

E. Nishikawa, H. Finkelmann, and H. R. Brand, “Smectic A liquid single crystal elastomers showing macroscopic in-plane fluidity,” Macromol. Rapid Commun. 18(2), 65–71 (1997).
[Crossref]

Carmon, T.

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X.D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl.  2, 1038 (2013).

H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Dahan, R.

de Pablo, J. J.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

Del’Haye, P.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Deng, Y.

Dhara, S.

Dong, C. H.

Z. H. Zhou, C. L. Zou, Y. Chen, Z. Shen, G. C. Guo, and C. H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25(4), 4046–4053 (2017).
[Crossref] [PubMed]

C. H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Drzymala, A.

H. Herba and A. Drzymała, “Anisotropic attenuation of acoustic waves in nematic liquid crystals,” Liq. Cryst. 8(6), 819–823 (1990).
[Crossref]

H. Herba, A. Szymanski, and A. Drzymała, “Experimental test of hydrodynamic theories for nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 127(1), 153–158 (1985).
[Crossref]

Fan, X.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46(3), 389–396 (2007).
[Crossref] [PubMed]

Fan, X.D.

K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X.D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl.  2, 1038 (2013).

Farrell, G.

Finkelmann, H.

E. Nishikawa, H. Finkelmann, and H. R. Brand, “Smectic A liquid single crystal elastomers showing macroscopic in-plane fluidity,” Macromol. Rapid Commun. 18(2), 65–71 (1997).
[Crossref]

Fiore, V.

C. H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Guo, G. C.

Han, K.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref] [PubMed]

Han, K. W.

K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

Hasan, M.

M. Hasan, D. F. Shirude, A. P. Hiray, U. B. Kadam, and A. B. Sawant, “Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and313.15) K,” J. Chem. Eng. Data 51(5), 1922–1926 (2006).
[Crossref]

Herba, H.

H. Herba and A. Drzymała, “Anisotropic attenuation of acoustic waves in nematic liquid crystals,” Liq. Cryst. 8(6), 819–823 (1990).
[Crossref]

H. Herba, A. Szymanski, and A. Drzymała, “Experimental test of hydrodynamic theories for nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 127(1), 153–158 (1985).
[Crossref]

Hiray, A. P.

M. Hasan, D. F. Shirude, A. P. Hiray, U. B. Kadam, and A. B. Sawant, “Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and313.15) K,” J. Chem. Eng. Data 51(5), 1922–1926 (2006).
[Crossref]

Hofer, J.

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).

Hossein-Zadeh, M.

Humar, M.

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43(13–15), 1937–1950 (2016).
[Crossref]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Hwang, Y. H.

J.-H. Ko, Y. H. Hwang, and J.-H. Kim, “Sound propagation in 5CB liquid crystals homogeneously confined in a olanar cell,” J. Inf. Disp. 10(2), 72–75 (2009).
[Crossref]

Kadam, U. B.

M. Hasan, D. F. Shirude, A. P. Hiray, U. B. Kadam, and A. B. Sawant, “Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and313.15) K,” J. Chem. Eng. Data 51(5), 1922–1926 (2006).
[Crossref]

Kavungal, V.

Kim, J. H.

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref] [PubMed]

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using Brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

Kim, J.-H.

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using Brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

J.-H. Ko, Y. H. Hwang, and J.-H. Kim, “Sound propagation in 5CB liquid crystals homogeneously confined in a olanar cell,” J. Inf. Disp. 10(2), 72–75 (2009).
[Crossref]

Kim, K.H.

K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X.D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl.  2, 1038 (2013).

Kim, T. H.

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using Brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

Kippenberg, T.

Kippenberg, T. J.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Ko, J.-H.

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using Brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

J.-H. Ko, Y. H. Hwang, and J.-H. Kim, “Sound propagation in 5CB liquid crystals homogeneously confined in a olanar cell,” J. Inf. Disp. 10(2), 72–75 (2009).
[Crossref]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Kuzyk, M. C.

C. H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Kvasic, I.

Lamb, H.

H. Lamb, “On the vibrations of a spherical shell,” Proc. Lond. Math. Soc. 1(1), 50–56 (1882).
[Crossref]

Lavrentovich, O.

V. Bondar, O. Lavrentovich, and V. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74(1), 60–67 (1992).

Lee, W.

K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X.D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl.  2, 1038 (2013).

Leon, T.

T. Leon and A. Nieves, “Drops and shells of liquid crystal,” Colloid Polym. Sci. 289(4), 345–359 (2011).
[Crossref]

Leseman, Z. C.

Li, B. B.

Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
[Crossref]

Li, M.

Lin, I. H.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Lisjak, D.

Liu, F.

Liu, J.

K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X.D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl.  2, 1038 (2013).

Liu, L.

Liu, Y. C.

Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
[Crossref]

Mallik, A. K.

Martin, L. L.

Masuko, M.

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Rheological properties of LC 4-pentyl 4-cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 91–100 (2001).
[Crossref]

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Temperature dependence of acoustical relaxation times involving the vicinity of NI phase transition point in 5CB LC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 183–202 (2001).
[Crossref]

Mertelj, A.

Miller, D. S.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

Mur, M.

Murphy, C. J.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

Musevic, I.

I. Musevic, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4(1), 1–34 (2016).
[Crossref]

Muševic, I.

Nieves, A.

T. Leon and A. Nieves, “Drops and shells of liquid crystal,” Colloid Polym. Sci. 289(4), 345–359 (2011).
[Crossref]

Niranjan, V.

Nishikawa, E.

E. Nishikawa, H. Finkelmann, and H. R. Brand, “Smectic A liquid single crystal elastomers showing macroscopic in-plane fluidity,” Macromol. Rapid Commun. 18(2), 65–71 (1997).
[Crossref]

Nooshi, N.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Pergamenshchik, V.

V. Bondar, O. Lavrentovich, and V. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74(1), 60–67 (1992).

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Rokhsari, H.

Sawant, A. B.

M. Hasan, D. F. Shirude, A. P. Hiray, U. B. Kadam, and A. B. Sawant, “Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and313.15) K,” J. Chem. Eng. Data 51(5), 1922–1926 (2006).
[Crossref]

Schliesser, A.

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Semenova, Y.

Shen, Z.

Shirude, D. F.

M. Hasan, D. F. Shirude, A. P. Hiray, U. B. Kadam, and A. B. Sawant, “Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and313.15) K,” J. Chem. Eng. Data 51(5), 1922–1926 (2006).
[Crossref]

Sofi, J. A.

Sperkach, V.

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Rheological properties of LC 4-pentyl 4-cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 91–100 (2001).
[Crossref]

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Temperature dependence of acoustical relaxation times involving the vicinity of NI phase transition point in 5CB LC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 183–202 (2001).
[Crossref]

Sperkach, Y.

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Rheological properties of LC 4-pentyl 4-cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 91–100 (2001).
[Crossref]

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Temperature dependence of acoustical relaxation times involving the vicinity of NI phase transition point in 5CB LC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 183–202 (2001).
[Crossref]

Spinner, S.

S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc. 39(3), 113–118 (1956).
[Crossref]

Strybulevych, A.

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Rheological properties of LC 4-pentyl 4-cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 91–100 (2001).
[Crossref]

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Temperature dependence of acoustical relaxation times involving the vicinity of NI phase transition point in 5CB LC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 183–202 (2001).
[Crossref]

Suter, J. D.

Szymanski, A.

H. Herba, A. Szymanski, and A. Drzymała, “Experimental test of hydrodynamic theories for nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 127(1), 153–158 (1985).
[Crossref]

Tang, T.

Tian, L.

C. H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Tomes, M.

K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X.D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl.  2, 1038 (2013).

Vahala, K. J.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref] [PubMed]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Wang, H. L.

C. H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

White, I. M.

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Wu, Q.

Wu, X.

Xiao, Y. F.

Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
[Crossref]

Xu, L.

Zhou, Z. H.

Zhu, H.

Zhu, K.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

Zhu, K. Y.

K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

Zou, C. L.

Ann. Phys. (1)

C. H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

Colloid Polym. Sci. (1)

T. Leon and A. Nieves, “Drops and shells of liquid crystal,” Colloid Polym. Sci. 289(4), 345–359 (2011).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc. 39(3), 113–118 (1956).
[Crossref]

J. Chem. Eng. Data (1)

M. Hasan, D. F. Shirude, A. P. Hiray, U. B. Kadam, and A. B. Sawant, “Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and313.15) K,” J. Chem. Eng. Data 51(5), 1922–1926 (2006).
[Crossref]

J. Inf. Disp. (1)

J.-H. Ko, Y. H. Hwang, and J.-H. Kim, “Sound propagation in 5CB liquid crystals homogeneously confined in a olanar cell,” J. Inf. Disp. 10(2), 72–75 (2009).
[Crossref]

J. Korean Phys. Soc. (2)

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

J. H. Kim, T. H. Kim, J.-H. Ko, and J.-H. Kim, “Acoustic anisotropy in 5CB liquid crystal cells as determined by using Brillouin light scattering,” J. Korean Phys. Soc. 61(6), 862–866 (2012).
[Crossref]

Light: Sci. Appl (1)

K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X.D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl.  2, 1038 (2013).

Liq. Cryst. (2)

H. Herba and A. Drzymała, “Anisotropic attenuation of acoustic waves in nematic liquid crystals,” Liq. Cryst. 8(6), 819–823 (1990).
[Crossref]

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43(13–15), 1937–1950 (2016).
[Crossref]

Liq. Cryst. Rev. (1)

I. Musevic, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4(1), 1–34 (2016).
[Crossref]

Macromol. Rapid Commun. (1)

E. Nishikawa, H. Finkelmann, and H. R. Brand, “Smectic A liquid single crystal elastomers showing macroscopic in-plane fluidity,” Macromol. Rapid Commun. 18(2), 65–71 (1997).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (3)

H. Herba, A. Szymanski, and A. Drzymała, “Experimental test of hydrodynamic theories for nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 127(1), 153–158 (1985).
[Crossref]

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Temperature dependence of acoustical relaxation times involving the vicinity of NI phase transition point in 5CB LC,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 183–202 (2001).
[Crossref]

Y. Sperkach, V. Sperkach, O. Aliokhin, A. Strybulevych, and M. Masuko, “Rheological properties of LC 4-pentyl 4-cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 91–100 (2001).
[Crossref]

Nanophotonics (1)

Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
[Crossref]

Nat. Nanotechnol. (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Humar, M. Ravnik, S. Pajk, and I. Muševic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Opt. Express (9)

F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013).
[Crossref] [PubMed]

H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref] [PubMed]

Y. Deng, F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21(4), 4653–4664 (2013).
[Crossref] [PubMed]

Z. Chen, M. Li, X. Wu, L. Liu, and L. Xu, “2-D optical/opto-mechanical microfluidic sensing with micro-bubble resonators,” Opt. Express 23(14), 17659–17664 (2015).
[Crossref] [PubMed]

V. Kavungal, G. Farrell, Q. Wu, A. K. Mallik, and Y. Semenova, “Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal,” Opt. Express 26(7), 8431–8442 (2018).
[Crossref] [PubMed]

M. Mur, J. A. Sofi, I. Kvasić, A. Mertelj, D. Lisjak, V. Niranjan, I. Muševič, and S. Dhara, “Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets,” Opt. Express 25(2), 1073–1083 (2017).
[Crossref] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref] [PubMed]

Z. H. Zhou, C. L. Zou, Y. Chen, Z. Shen, G. C. Guo, and C. H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25(4), 4046–4053 (2017).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. A (1)

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).

Phys. Rev. Lett. (1)

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Proc. Lond. Math. Soc. (1)

H. Lamb, “On the vibrations of a spherical shell,” Proc. Lond. Math. Soc. 1(1), 50–56 (1882).
[Crossref]

Science (2)

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

V. Bondar, O. Lavrentovich, and V. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74(1), 60–67 (1992).

Other (1)

P. G. De Gennes and J. Prost, the Physics of Liquid Crystals (Oxford University, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic representation of LC-MBR with fiber taper coupling and packaging. (b) Equatorial cross-section of LC-MBR (The blue lines present the direction of LC orientation).
Fig. 2
Fig. 2 Light field and polarized micrographs of LC-MBR. (a) bright-field, (b) crossed polarized, (c)-(f) bright field micrographs with phase transition, (g)-(j) polarized micrographs with phase transition.
Fig. 3
Fig. 3 Optomechanical spectra of MBR when core is filled with (a) air, (b) methylbenzene (MB), (c) LC.
Fig. 4
Fig. 4 Optomechanical spectra of a LC-MBR when temperature changes (left side-nematic, right side-isotropic).
Fig. 5
Fig. 5 (a) Optomechanical mode’s peak shifts with rising temperature. (b). Frequency shift of nematic Peak 2 with fine resolution.
Fig. 6
Fig. 6 Temperature dependence of methylbenzene (MB)-filled optomechanical resonances.
Fig. 7
Fig. 7 Schematic drawings of magnetic field setup and the alignment of 5CB LC molecules at different levels of the external magnetic field. (a) No magnetic field or before the MFT threshold. (b) Just beyond the MFT threshold. (c) Far above the MFT threshold.
Fig. 8
Fig. 8 (a) Optomechanical spectra with magnetic tuning. (b) Optomechanical mode’s peak shifts with magnetic tuning.
Fig. 9
Fig. 9 (a) Temperature dependence of 5CB LC long axis sound speed [32]. (b) Temperature dependence of 5CB LC density [33].
Fig. 10
Fig. 10 Temperature dependence of the sound attenuation in 5CB LC [32].

Tables (1)

Tables Icon

Table 1 Comparison for tuning ability of LC or methylbenzene-filled MBR (Temperature range: 298~306 K)

Metrics