Abstract

Coupled cavities have been used previously to realize on-chip low-dispersion slow-light waveguides, but the bandwidth was usually narrower than 10 nm and the total length was much shorter than 1 mm. Here we report long (0.05-2.5 mm) slow-light coupled cavity waveguides formed by using 50, 200, and 1,000 L3 photonic crystal nanocavities with an optical volume smaller than (λ/n)3, slanted from Γ-K orientation. We demonstrate experimentally the formation of a single-mode wideband coupled cavity mode with a bandwidth of up to 32nm (4THz) in telecom C-band, generated from the ultra-narrow-band (~300 MHz) fundamental mode of each L3 nanocavity, by controlling the cavity array orientation. Thanks to the ultrahigh-Q nanocavity design, coupled cavity waveguides longer than 1 mm exhibited low loss and allowed time-of-flight dispersion measurement over a bandwidth up to 22 nm by propagating a short pulse over 1,000 coupled L3 nanocavities. The highly-dense slanted array of L3 nanocavity demonstrated unprecedentedly high cavity coupling among the nanocavities. The scheme we describe provides controllable planar dispersion-managed waveguides as an alternative to W1-based waveguides on a photonic crystal chip.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide

Nobuyuki Matsuda, Takumi Kato, Ken-ichi Harada, Hiroki Takesue, Eiichi Kuramochi, Hideaki Taniyama, and Masaya Notomi
Opt. Express 19(21) 19861-19874 (2011)

Waveguide coupled air-slot photonic crystal nanocavity for optomechanics

Wataru Shimizu, Naomi Nagai, Kenta Kohno, Kazuhiko Hirakawa, and Masahiro Nomura
Opt. Express 21(19) 21961-21969 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
    [Crossref]
  2. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [Crossref] [PubMed]
  3. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  4. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [Crossref]
  5. N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, “Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays,” Opt. Lett. 39(8), 2290–2293 (2014).
    [Crossref] [PubMed]
  6. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
    [Crossref]
  7. Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–426 (2015).
    [Crossref]
  8. areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
    [Crossref]
  9. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18(25), 26505–26516 (2010).
    [Crossref] [PubMed]
  10. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
    [Crossref] [PubMed]
  11. J. Lian, S. Sokolov, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Dispersion of coupled mode-gap cavities,” Opt. Lett. 40(19), 4488–4491 (2015).
    [Crossref] [PubMed]
  12. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [Crossref]
  13. Y. Terada, K. Kondo, R. Abe, and T. Baba, “Full C-band Si photonic crystal waveguide modulator,” Opt. Lett. 42(24), 5110–5112 (2017).
    [Crossref] [PubMed]
  14. T. Baba, H. C. Nguyen, N. Ishikura, K. Suzuki, M. Shinkawa, R. Hayakawa, and K. Kondo, “Photonic crystal slow light devices fabricated by CMOS-compatible process,” IEICE Electron. Express 10(10), 20132002 (2013).
    [Crossref]
  15. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
    [Crossref]
  16. E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
    [Crossref] [PubMed]
  17. Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “High-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
    [Crossref]
  18. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15(3), 1228–1233 (2007).
    [Crossref] [PubMed]
  19. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett. 34(3), 359–361 (2009).
    [Crossref] [PubMed]
  20. A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, and A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express 19(6), 5670–5675 (2011).
    [Crossref] [PubMed]
  21. A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vučković, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86(19), 195312 (2012).
    [Crossref]
  22. E. Kuramochi, N. Matsuda, K. Nozaki, H. Takesue, and M. Notomi, “Over-1mm-long wideband on-chip slowlight waveguides realized by 1,000 coupled L3 nanocavities,” CLEO:2015 (Optical Society of America, Washington, D.C., 2015), paper SF2H.1.
  23. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
    [Crossref] [PubMed]
  24. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  25. M. Minkov and V. Savona, “Wide-band slow light in compact photonic crystal coupled-cavity waveguides,” Optica 2(7), 631–634 (2015).
    [Crossref]
  26. L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2(3), 404–414 (2010).
    [Crossref]
  27. T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light,” J. Lightwave Technol. 33(14), 3034 (2015).
  28. Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band slow light in photonic crystal coupled-cavity waveguides,” https://arxiv.org/abs/1706.09625 .
  29. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
    [Crossref] [PubMed]
  30. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
    [Crossref] [PubMed]
  31. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [Crossref] [PubMed]
  32. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  33. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
    [Crossref]
  34. M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7(11), 907–912 (2011).
    [Crossref]
  35. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
    [Crossref] [PubMed]

2017 (1)

2015 (5)

2014 (3)

2013 (1)

T. Baba, H. C. Nguyen, N. Ishikura, K. Suzuki, M. Shinkawa, R. Hayakawa, and K. Kondo, “Photonic crystal slow light devices fabricated by CMOS-compatible process,” IEICE Electron. Express 10(10), 20132002 (2013).
[Crossref]

2012 (1)

A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vučković, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86(19), 195312 (2012).
[Crossref]

2011 (3)

2010 (3)

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2(3), 404–414 (2010).
[Crossref]

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18(25), 26505–26516 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (4)

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[Crossref] [PubMed]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “High-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[Crossref]

2007 (2)

2006 (1)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

2005 (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

1999 (1)

1998 (1)

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
[Crossref]

Abe, R.

Adachi, J.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Arita, Y.

Asano, T.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “High-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Assefa, S.

Baba, T.

Baets, R.

Bajcsy, M.

A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vučković, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86(19), 195312 (2012).
[Crossref]

Bank, S. R.

A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vučković, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86(19), 195312 (2012).
[Crossref]

Beggs, D. M.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2(3), 404–414 (2010).
[Crossref]

Bogaerts, W.

Canciamilla, A.

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Chalcraft, A. R. A.

Combrié, S.

Cooper, M. L.

Dasika, V. D.

A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vučković, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86(19), 195312 (2012).
[Crossref]

De La Rue, R.

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

De Rossi, A.

Demler, E. A.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7(11), 907–912 (2011).
[Crossref]

Dumon, P.

Ferrari, C.

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Fox, A. M.

Green, W. M. J.

Grossman, E.

Gupta, G.

Hafezi, M.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7(11), 907–912 (2011).
[Crossref]

Hagino, H.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “High-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Hayakawa, R.

T. Baba, H. C. Nguyen, N. Ishikura, K. Suzuki, M. Shinkawa, R. Hayakawa, and K. Kondo, “Photonic crystal slow light devices fabricated by CMOS-compatible process,” IEICE Electron. Express 10(10), 20132002 (2013).
[Crossref]

Hinakura, Y.

Houdré, R.

Hu, H.

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–426 (2015).
[Crossref]

Huang, Y.

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Ishikura, N.

Jágerská, J.

Jones, B. D.

Kampfrath, T.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2(3), 404–414 (2010).
[Crossref]

Karle, T.

Kawaaski, T.

Kondo, K.

Krauss, T. F.

A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, and A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express 19(6), 5670–5675 (2011).
[Crossref] [PubMed]

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2(3), 404–414 (2010).
[Crossref]

D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15(3), 1228–1233 (2007).
[Crossref] [PubMed]

Kuipers, K.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2(3), 404–414 (2010).
[Crossref]

Kuramochi, E.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, “Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays,” Opt. Lett. 39(8), 2290–2293 (2014).
[Crossref] [PubMed]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
[Crossref] [PubMed]

Lam, S.

Le Thomas, N.

Lee, R. K.

Lian, J.

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Lukin, M. D.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7(11), 907–912 (2011).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Majumdar, A.

A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vučković, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86(19), 195312 (2012).
[Crossref]

Matsuda, N.

Matsuo, S.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Melloni, A.

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Michaeli, A.

Minkov, M.

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
[Crossref] [PubMed]

Modinos, A.

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
[Crossref]

Mookherjea, S.

Mori, D.

Morichetti, F.

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Mosk, A. P.

Nguyen, H. C.

T. Baba, H. C. Nguyen, N. Ishikura, K. Suzuki, M. Shinkawa, R. Hayakawa, and K. Kondo, “Photonic crystal slow light devices fabricated by CMOS-compatible process,” IEICE Electron. Express 10(10), 20132002 (2013).
[Crossref]

Noda, S.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “High-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Notomi, M.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, “Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays,” Opt. Lett. 39(8), 2290–2293 (2014).
[Crossref] [PubMed]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Nozaki, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

O’Brien, D.

O’Faolain, L.

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2(3), 404–414 (2010).
[Crossref]

Oulton, R.

Paloczi, G.

Poon, J.

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Rundquist, A.

A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vučković, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86(19), 195312 (2012).
[Crossref]

Ryu, H.

Salib, M.

Samarelli, A.

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Sasaki, H.

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Savona, V.

Scherer, A.

Scheuer, J.

Schneider, M. A.

Sekaric, L.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Settle, M. D.

Shinkawa, M.

T. Baba, H. C. Nguyen, N. Ishikura, K. Suzuki, M. Shinkawa, R. Hayakawa, and K. Kondo, “Photonic crystal slow light devices fabricated by CMOS-compatible process,” IEICE Electron. Express 10(10), 20132002 (2013).
[Crossref]

Shinobu, F.

Shinya, A.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Skolnick, M. S.

Sokolov, S.

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Sorel, M.

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

Stefanou, N.

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Suzuki, K.

T. Baba, H. C. Nguyen, N. Ishikura, K. Suzuki, M. Shinkawa, R. Hayakawa, and K. Kondo, “Photonic crystal slow light devices fabricated by CMOS-compatible process,” IEICE Electron. Express 10(10), 20132002 (2013).
[Crossref]

Szymanski, D.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Takahashi, Y.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “High-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[Crossref]

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

Takesue, H.

Tamanuki, T.

Tamura, T.

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Tanaka, Y.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “High-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[Crossref]

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

Taylor, J. M.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7(11), 907–912 (2011).
[Crossref]

Terada, Y.

Thijssen, A. C. T.

Vlasov, Y.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Vlasov, Y. A.

Vuckovic, J.

A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vučković, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86(19), 195312 (2012).
[Crossref]

Wang, Q.

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–426 (2015).
[Crossref]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

White, T. P.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2(3), 404–414 (2010).
[Crossref]

Whittaker, D. M.

Xia, F.

Xia, F. N.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Xu, Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Yariv, A.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Yüce, E.

Zabelin, V.

Zhang, Y.-N.

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–426 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–426 (2015).
[Crossref]

Appl. Phys. Lett. (2)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “High-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[Crossref]

IEEE Photonics J. (2)

areA. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: Coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[Crossref]

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2(3), 404–414 (2010).
[Crossref]

IEEE Trans. NanoTechnol. (1)

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–426 (2015).
[Crossref]

IEICE Electron. Express (1)

T. Baba, H. C. Nguyen, N. Ishikura, K. Suzuki, M. Shinkawa, R. Hayakawa, and K. Kondo, “Photonic crystal slow light devices fabricated by CMOS-compatible process,” IEICE Electron. Express 10(10), 20132002 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (4)

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Nat. Phys. (1)

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7(11), 907–912 (2011).
[Crossref]

Nature (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (7)

A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, and A. M. Fox, “Mode structure of coupled L3 photonic crystal cavities,” Opt. Express 19(6), 5670–5675 (2011).
[Crossref] [PubMed]

J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
[Crossref] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[Crossref] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
[Crossref] [PubMed]

M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18(25), 26505–26516 (2010).
[Crossref] [PubMed]

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
[Crossref] [PubMed]

D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15(3), 1228–1233 (2007).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Phys. Rev. B (2)

A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vučković, “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86(19), 195312 (2012).
[Crossref]

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57(19), 12127–12133 (1998).
[Crossref]

Phys. Rev. Lett. (2)

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Other (2)

Y. Lai, M. S. Mohamed, B. Gao, M. Minkov, R. W. Boyd, V. Savona, R. Houdre, and A. Badolato, “Ultra-wide-band slow light in photonic crystal coupled-cavity waveguides,” https://arxiv.org/abs/1706.09625 .

E. Kuramochi, N. Matsuda, K. Nozaki, H. Takesue, and M. Notomi, “Over-1mm-long wideband on-chip slowlight waveguides realized by 1,000 coupled L3 nanocavities,” CLEO:2015 (Optical Society of America, Washington, D.C., 2015), paper SF2H.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Designs and analysis of L3-based slanted CROW up to N = 5. (a) Cavity design and detailed cavity array layout. The lattice constant (a) and hole radius (r) were respectively 420 and 100 nm in the simulation and 408 and 95 nm in the experiment. The thickness (t) and refractive index (n) of the Si slab were 200 nm and 3.46, respectively. The hole shifts annotated A, B, and C to enhance Q [16] were 0.055a, 0.296a, and 0.148a, respectively. The L3 footprint is displayed as a broken yellow line. L3s (Total number: N) were periodically arrayed with a spacing of L on the green line slanted by θ from a Γ-K orientation along which L3 point defects were placed. Lv, the spacing of the rows on which the L3 cavities were placed, was set at 3 (rows.) (b) Index profile (the inset shows the mode profile of a single L3 nanocavity) and (c) the 1st (λ = 1594 nm), (d) the 2nd (λ = 1585 nm), (e) the 3rd (λ = 1575 nm), and (f) the 4th (λ = 1567 nm) CROW modes (N = 4, θ = 30°) obtained by FDTD simulations. (g) A scanning electron microscope image of a slanted CROW (N = 5, θ = 30°) sample. The locations of L3s are shown by overlaid yellow ovals. (h) Theoretical κ as a function of L for fixed θ (solid lines). The broken green line shows κ for Lv = 3 corresponding to the experiment. ng is the theoretical group index at the CROW band centre. The two data plots indicated by surrounding circles were simulated using the conventional L3 design [24]. (i) Experimental transmission spectrum with five discrete CROW modes (N = 5, θ = 30°). (j) Sinusoidal curve fitting of the CROW modes shown in (i). (k) Experimentally evaluated κ compared with theoretical κ.
Fig. 2
Fig. 2 Experimental large-scale CROW samples. (a) Schematic of the design of on-chip waveguide with large-scale CROW samples. All samples have an 8 μm-wide WG part and a 16 μm-long conversion (8 μm to 0.5 μm) part. The reference WG has a 1.85 mm-long nanowire part (width: 500 nm). The CROW sample has two coupling W1 waveguide parts (total length: ~30 μm) in addition to the CROW part (length: LCROW). (b)-(c) Optical microscope images of the top view of CROW samples with θ = 30°. (b) N = 50 and 200 and (c) N = 1,000. (d)-(e) SEM images of slanted L3 CROWs. (d) is wide area image of the sample with θ = 30°. The inset is expanded image of a L3 nanocavity. (e) Expanded images for all fabricated array orientations (θ).
Fig. 3
Fig. 3 (a) Spectrum of single L3 nanocavity. The blue line is a Lorentzian fitting. FWHM: full width at half maximum. (b) A wide-range transmission spectrum of a CROW for θ = 37° and N = 50. (c) Loss plots obtained by comparing the transmission of N = 50, 200, and 1,000 samples (cut back method.) (d) Transmission spectra of CROWs with N = 50 (blue lines), N = 200 (green lines) and N = 1,000 (red lines) at various θ values. The grey lines are the spectra of reference Si waveguides.
Fig. 4
Fig. 4 Results of time-of-flight experiment for slanted L3 CROWs with N = 1,000, obtained by 17-ps pulse propagation. (a)-(b) Time dependent output waveform spectrum after pulses had passed through the CROW (N = 1,000). (a) θ = 37°and (b) 60°. Vertical magenta lines show the pulse delay in the reference waveguide corrected by the delay in the waveguides out of the CROW. (c) Extracted time-dependent waveforms after pulses had passed through the CROW (N = 1,000, θ = 37°). Pulse wavelengths are displayed on the corresponding waveforms. The waveform obtained from the reference waveguide is corrected as the length of the waveguides are identical to that of the CROW sample since every sample having different CROW design has different waveguide design as shown in Fig. 2(a). Y-scale (intensity) was normalized in every waveform. (See Appendix 5 for detail). (d)-(g), Flight time (left) and ng (right) as a function of wavelength obtained for θ values of (d) 30°, (e) 37°, (f) 46°, and (g) 60° after correction. The blue lines show the results of a ten-point moving average. The grey area overlaid on the plot shows BWNDBP in which ng changed within ± 10%. ng values (ng(C)) for NDBP and DBP evaluation were determined at the centre value of the ± 10% ng range.
Fig. 5
Fig. 5 (a) Experimental DBP, NDBP, and LCROW values plotted as a function of L in large-scale CROWs. DBP was evaluated from LCROW/c × {(ng(C))-(ng of vacuum)} × (BWDBP in ω). The experimental NDBP was evaluated from (ng(C)) × (BWNDBP in ω)/(ω at the centre of CROW band). The broken red line shows the theoretical NDBP ( = 0.639c/(πω0L), where ω0/2π = 193 THz, a = 408 nm) for sinusoidal dispersion curve. (T) were obtained in this study for N = 1,000 CROWs and (P) were obtained in L = 5a and N = 400 in [5] and L = 7a and N = 150 in [6] previously. (b) κ, NDBP and θ plots as a function of L in short CROWs. The experimental values in this study (T) were measured in CROWs with N = 50 and evaluated from BWCROW shown in Table 1. The experimental NDBP values in the previous study (P) were according to the κ values reported in [6].
Fig. 6
Fig. 6 Tight binding model in 1D chain-like CROW.
Fig. 7
Fig. 7 Schematic setup and apparatus for TOF single-pulse propagation measurement. VOA: Variable fiber optical attenuator. Pol: optical polarizer. EDFA: Erbium-doped fiber amplifier. BPF: Bandpass filter. PPG: Pulse pattern generator. See [15] for details.

Tables (1)

Tables Icon

Table 1 Specifications and characteristics of large-scale slanted L3 CROWs evaluated by transmission measurement

Metrics