Abstract

The high refractive index of lithium niobate crystal (n = 2.2) and the highly transparent range (300-5000 nm), makes it a perfect material for refractive lenses and other types of micro-optical elements. This material already finds extensive use in waveguides and photonic crystals, however, little work has been done on producing refractive optical components in lithium niobate, presumably due to the challenges associated with its fragility and difficulties in three-dimensional micromachining. In this study, we fabricated high-quality refractive micro-lenses and micro-axicons with low surface roughness (< λvis / 20), with 220 µm diameters and sag heights up to 22 µm in single-crystal LN using focused Xe beam milling. Xe ion beam milling is a flexible and rapid technique allowing realization of complex three-dimensional surface reliefs directly in lithium niobate. We characterized the optical performance of the fabricated elements showing sub-µm focusing capabilities of both the lenses and axicons.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of glass microlenses using focused Xe beam

Sergey Gorelick and Alex De Marco
Opt. Express 26(10) 13647-13655 (2018)

Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes

Séverine Diziain, Reinhard Geiss, Michael Steinert, Carsten Schmidt, Wei-Kun Chang, Stefan Fasold, Daniel Füßel, Yen-Hung Chen, and Thomas Pertsch
Opt. Mater. Express 5(9) 2081-2089 (2015)

Conicity and depth effects on the optical transmission of lithium niobate photonic crystals patterned by focused ion beam

Ozgur Yavuzcetin, Birol Ozturk, Dong Xiao, and Srinivas Sridhar
Opt. Mater. Express 1(7) 1262-1271 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [Crossref]
  2. G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  3. M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: Recent developments and applications,” Appl. Phys. Rev. 2(4), 040603 (2015).
    [Crossref]
  4. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
    [Crossref] [PubMed]
  5. I. Krasnokutska, J. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
    [Crossref] [PubMed]
  6. S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” Opt. Express 26(4), 4421–4430 (2018).
    [Crossref] [PubMed]
  7. R. S. Weis and T. K. Gaylord, “Lithium-Niobate - Summary of Physical-Properties and Crystal-Structure,” Appl. Phys. Adv. Mater. 37, 191–203 (1985).
  8. W. Sohler, “Integrated-Optics in LiNbO3,” Thin Solid Films 175, 191–200 (1989).
    [Crossref]
  9. S. Diziain, R. Geiss, M. Steinert, C. Schmidt, W. K. Chang, S. Fasold, D. Fussel, Y. H. Chen, and T. Pertsch, “Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes,” Opt. Mater. Express 5(9), 2081–2089 (2015).
    [Crossref]
  10. R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
    [Crossref]
  11. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
    [Crossref] [PubMed]
  12. A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
    [Crossref]
  13. M. K. Tan, L. Y. Yeo, and J. R. Friend, “Rapid fluid flow and mixing induced in microchannels using surface acoustic waves,” EPL- Europhys. Lett. 87(4), 47003 (2009).
    [Crossref]
  14. L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics 3(1), 012002 (2009).
    [Crossref] [PubMed]
  15. J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
    [Crossref]
  16. J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler, “Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization,” Nanotechnology 19(14), 145301 (2008).
    [Crossref] [PubMed]
  17. D. Ashtiani, H. Venugopal, M. Belousoff, B. Spicer, J. Mak, A. Neild, and A. de Marco, “Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation,” J. Struct. Biol. 203(2), 94–101 (2018).
    [Crossref] [PubMed]
  18. H. Li, J. R. Friend, and L. Y. Yeo, “Surface acoustic wave concentration of particle and bioparticle suspensions,” Biomed. Microdevices 9(5), 647–656 (2007).
    [Crossref] [PubMed]
  19. H. Li, J. R. Friend, and L. Y. Yeo, “A scaffold cell seeding method driven by surface acoustic waves,” Biomaterials 28(28), 4098–4104 (2007).
    [Crossref] [PubMed]
  20. J. Friend, L. Yeo, M. Tan, and R. Shilton, “Concentration and mixing of particles in microdrops driven by focused surface acoustic waves,” IEEE Ultrasonics Symposium, 930–933 (2008).
    [Crossref]
  21. R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, “Particle concentration and mixing in microdrops driven by focused surface acoustic waves,” J. Appl. Phys. 104(1), 014910 (2008).
    [Crossref]
  22. D. Y. Zang and C. S. Tsai, “Single-Mode Wave-Guide Microlenses and Microlens Arrays Fabrication in LiNbO3 Using Titanium Indiffused Proton-Exchange Technique,” Appl. Phys. Lett. 46(8), 703–705 (1985).
    [Crossref]
  23. R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method,” Opt. Express 22(22), 27733–27738 (2014).
    [Crossref] [PubMed]
  24. Z. Y. A. Al-Shibaany, Z. J. Choong, D. Huo, J. Hedley, and Z. X. Hu, “CNC Machining of Lithium Niobate for Rapid Prototyping of Sensors,” IEEE Sensors 2015, 442–445 (2015).
  25. P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
    [Crossref]
  26. S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).
  27. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
    [Crossref]
  28. L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
    [Crossref]
  29. J. M. Lv, Y. Z. Cheng, W. H. Yuan, X. T. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
    [Crossref]
  30. F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
    [Crossref]
  31. X. J. Li, K. Terabe, H. Hatano, and K. Kitamura, “Nano-domain engineering in LiNbO3 by focused ion beam,” Jpn. J. Appl. Phys. 44(51), L1550–L1552 (2005).
    [Crossref]
  32. X. F. Xu, S. Yan, J. M. Xue, Y. G. Wang, K. M. Wang, and X. L. Wang, “Investigation of etching two-dimensional microhole lattice array on lithium niobate with focused ion beam for fabricating photonic crystals,” J. Vac. Sci. Technol. B 27(4), 1851–1855 (2009).
    [Crossref]
  33. G. Y. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. H. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
    [Crossref]
  34. M. Sridhar, D. K. Maurya, J. R. Friend, and L. Y. Yeo, “Focused ion beam milling of microchannels in lithium niobate,” Biomicrofluidics 6(1), 012819 (2012).
    [Crossref] [PubMed]
  35. Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
    [Crossref]
  36. M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
    [Crossref] [PubMed]
  37. B. Chebbi, I. Golub, and P. Breygin, “Characterization of a refractive linear axicon with distant depth of field and no central blocking,” Appl. Opt. 52(35), 8572–8575 (2013).
    [Crossref] [PubMed]
  38. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
    [Crossref]
  39. S. Gorelick and A. De Marco, “Fabrication of glass microlenses using focused Xe beam,” Opt. Express 26(10), 13647–13655 (2018).
    [Crossref] [PubMed]
  40. J. F. Ziegler, “Stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).

2018 (4)

2015 (8)

M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: Recent developments and applications,” Appl. Phys. Rev. 2(4), 040603 (2015).
[Crossref]

R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

Z. Y. A. Al-Shibaany, Z. J. Choong, D. Huo, J. Hedley, and Z. X. Hu, “CNC Machining of Lithium Niobate for Rapid Prototyping of Sensors,” IEEE Sensors 2015, 442–445 (2015).

J. M. Lv, Y. Z. Cheng, W. H. Yuan, X. T. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Steinert, C. Schmidt, W. K. Chang, S. Fasold, D. Fussel, Y. H. Chen, and T. Pertsch, “Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes,” Opt. Mater. Express 5(9), 2081–2089 (2015).
[Crossref]

2014 (2)

2013 (3)

2012 (2)

M. Sridhar, D. K. Maurya, J. R. Friend, and L. Y. Yeo, “Focused ion beam milling of microchannels in lithium niobate,” Biomicrofluidics 6(1), 012819 (2012).
[Crossref] [PubMed]

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

2011 (2)

J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
[Crossref]

G. Y. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. H. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

2009 (4)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

M. K. Tan, L. Y. Yeo, and J. R. Friend, “Rapid fluid flow and mixing induced in microchannels using surface acoustic waves,” EPL- Europhys. Lett. 87(4), 47003 (2009).
[Crossref]

L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics 3(1), 012002 (2009).
[Crossref] [PubMed]

X. F. Xu, S. Yan, J. M. Xue, Y. G. Wang, K. M. Wang, and X. L. Wang, “Investigation of etching two-dimensional microhole lattice array on lithium niobate with focused ion beam for fabricating photonic crystals,” J. Vac. Sci. Technol. B 27(4), 1851–1855 (2009).
[Crossref]

2008 (3)

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler, “Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization,” Nanotechnology 19(14), 145301 (2008).
[Crossref] [PubMed]

R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, “Particle concentration and mixing in microdrops driven by focused surface acoustic waves,” J. Appl. Phys. 104(1), 014910 (2008).
[Crossref]

2007 (2)

H. Li, J. R. Friend, and L. Y. Yeo, “Surface acoustic wave concentration of particle and bioparticle suspensions,” Biomed. Microdevices 9(5), 647–656 (2007).
[Crossref] [PubMed]

H. Li, J. R. Friend, and L. Y. Yeo, “A scaffold cell seeding method driven by surface acoustic waves,” Biomaterials 28(28), 4098–4104 (2007).
[Crossref] [PubMed]

2005 (4)

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

X. J. Li, K. Terabe, H. Hatano, and K. Kitamura, “Nano-domain engineering in LiNbO3 by focused ion beam,” Jpn. J. Appl. Phys. 44(51), L1550–L1552 (2005).
[Crossref]

Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

2004 (1)

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

1999 (1)

J. F. Ziegler, “Stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).

1989 (1)

W. Sohler, “Integrated-Optics in LiNbO3,” Thin Solid Films 175, 191–200 (1989).
[Crossref]

1985 (2)

D. Y. Zang and C. S. Tsai, “Single-Mode Wave-Guide Microlenses and Microlens Arrays Fabrication in LiNbO3 Using Titanium Indiffused Proton-Exchange Technique,” Appl. Phys. Lett. 46(8), 703–705 (1985).
[Crossref]

R. S. Weis and T. K. Gaylord, “Lithium-Niobate - Summary of Physical-Properties and Crystal-Structure,” Appl. Phys. Adv. Mater. 37, 191–203 (1985).

Alshehri, B.

Al-Shibaany, Z. Y. A.

Z. Y. A. Al-Shibaany, Z. J. Choong, D. Huo, J. Hedley, and Z. X. Hu, “CNC Machining of Lithium Niobate for Rapid Prototyping of Sensors,” IEEE Sensors 2015, 442–445 (2015).

Arifin, D. R.

J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler, “Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization,” Nanotechnology 19(14), 145301 (2008).
[Crossref] [PubMed]

Asano, T.

Ashtiani, D.

D. Ashtiani, H. Venugopal, M. Belousoff, B. Spicer, J. Mak, A. Neild, and A. de Marco, “Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation,” J. Struct. Biol. 203(2), 94–101 (2018).
[Crossref] [PubMed]

Astolfi, M.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

Bainier, C.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Bazzan, M.

M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: Recent developments and applications,” Appl. Phys. Rev. 2(4), 040603 (2015).
[Crossref]

Belousoff, M.

D. Ashtiani, H. Venugopal, M. Belousoff, B. Spicer, J. Mak, A. Neild, and A. de Marco, “Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation,” J. Struct. Biol. 203(2), 94–101 (2018).
[Crossref] [PubMed]

Bentini, G. G.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

Bernal, M. P.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Bettiol, A.

Bettiol, A. A.

G. Y. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. H. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Bianconi, M.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

Bo, F.

Borsetto, M.

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

Brandt, J.

R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
[Crossref]

Breygin, P.

Bryan, N. K. A.

Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
[Crossref]

Chang, W. K.

Chebbi, B.

Chen, F.

Chen, Y. H.

Cheng, Y. Z.

Cheung, E. J. H.

Chiarini, M.

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

Chong, T. C.

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Choong, Z. J.

Z. Y. A. Al-Shibaany, Z. J. Choong, D. Huo, J. Hedley, and Z. X. Hu, “CNC Machining of Lithium Niobate for Rapid Prototyping of Sensors,” IEEE Sensors 2015, 442–445 (2015).

Consonni, G.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

Courjal, N.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Cox, D. C.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

Danner, A. J.

S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” Opt. Express 26(4), 4421–4430 (2018).
[Crossref] [PubMed]

G. Y. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. H. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

de Marco, A.

D. Ashtiani, H. Venugopal, M. Belousoff, B. Spicer, J. Mak, A. Neild, and A. de Marco, “Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation,” J. Struct. Biol. 203(2), 94–101 (2018).
[Crossref] [PubMed]

S. Gorelick and A. De Marco, “Fabrication of glass microlenses using focused Xe beam,” Opt. Express 26(10), 13647–13655 (2018).
[Crossref] [PubMed]

De Nicola, P.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

Dholakia, K.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Diziain, S.

Dogheche, E.

Fasold, S.

Friend, J.

J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
[Crossref]

J. Friend, L. Yeo, M. Tan, and R. Shilton, “Concentration and mixing of particles in microdrops driven by focused surface acoustic waves,” IEEE Ultrasonics Symposium, 930–933 (2008).
[Crossref]

Friend, J. R.

M. Sridhar, D. K. Maurya, J. R. Friend, and L. Y. Yeo, “Focused ion beam milling of microchannels in lithium niobate,” Biomicrofluidics 6(1), 012819 (2012).
[Crossref] [PubMed]

L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics 3(1), 012002 (2009).
[Crossref] [PubMed]

M. K. Tan, L. Y. Yeo, and J. R. Friend, “Rapid fluid flow and mixing induced in microchannels using surface acoustic waves,” EPL- Europhys. Lett. 87(4), 47003 (2009).
[Crossref]

J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler, “Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization,” Nanotechnology 19(14), 145301 (2008).
[Crossref] [PubMed]

R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, “Particle concentration and mixing in microdrops driven by focused surface acoustic waves,” J. Appl. Phys. 104(1), 014910 (2008).
[Crossref]

H. Li, J. R. Friend, and L. Y. Yeo, “Surface acoustic wave concentration of particle and bioparticle suspensions,” Biomed. Microdevices 9(5), 647–656 (2007).
[Crossref] [PubMed]

H. Li, J. R. Friend, and L. Y. Yeo, “A scaffold cell seeding method driven by surface acoustic waves,” Biomaterials 28(28), 4098–4104 (2007).
[Crossref] [PubMed]

Fu, Y. Q.

Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
[Crossref]

Fussel, D.

Gao, F.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium-Niobate - Summary of Physical-Properties and Crystal-Structure,” Appl. Phys. Adv. Mater. 37, 191–203 (1985).

Geiss, R.

R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

S. Diziain, R. Geiss, M. Steinert, C. Schmidt, W. K. Chang, S. Fasold, D. Fussel, Y. H. Chen, and T. Pertsch, “Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes,” Opt. Mater. Express 5(9), 2081–2089 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

Golub, I.

Gorelick, S.

Grange, R.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

Gui, L.

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Gunter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Hao, X. T.

Hartung, H.

R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
[Crossref]

Hatano, H.

X. J. Li, K. Terabe, H. Hatano, and K. Kitamura, “Nano-domain engineering in LiNbO3 by focused ion beam,” Jpn. J. Appl. Phys. 44(51), L1550–L1552 (2005).
[Crossref]

Heard, P. J.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Hedley, J.

Z. Y. A. Al-Shibaany, Z. J. Choong, D. Huo, J. Hedley, and Z. X. Hu, “CNC Machining of Lithium Niobate for Rapid Prototyping of Sensors,” IEEE Sensors 2015, 442–445 (2015).

Higurashi, E.

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Hu, Z. X.

Z. Y. A. Al-Shibaany, Z. J. Choong, D. Huo, J. Hedley, and Z. X. Hu, “CNC Machining of Lithium Niobate for Rapid Prototyping of Sensors,” IEEE Sensors 2015, 442–445 (2015).

Huo, D.

Z. Y. A. Al-Shibaany, Z. J. Choong, D. Huo, J. Hedley, and Z. X. Hu, “CNC Machining of Lithium Niobate for Rapid Prototyping of Sensors,” IEEE Sensors 2015, 442–445 (2015).

Kawanishi, T.

Kitamura, K.

X. J. Li, K. Terabe, H. Hatano, and K. Kitamura, “Nano-domain engineering in LiNbO3 by focused ion beam,” Jpn. J. Appl. Phys. 44(51), L1550–L1552 (2005).
[Crossref]

Kley, E. B.

R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

Krasnokutska, I.

Lacour, F.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Langridge, M. T.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

Li, H.

H. Li, J. R. Friend, and L. Y. Yeo, “Surface acoustic wave concentration of particle and bioparticle suspensions,” Biomed. Microdevices 9(5), 647–656 (2007).
[Crossref] [PubMed]

H. Li, J. R. Friend, and L. Y. Yeo, “A scaffold cell seeding method driven by surface acoustic waves,” Biomaterials 28(28), 4098–4104 (2007).
[Crossref] [PubMed]

Li, J.

Li, W.

Li, X.

Li, X. J.

X. J. Li, K. Terabe, H. Hatano, and K. Kitamura, “Nano-domain engineering in LiNbO3 by focused ion beam,” Jpn. J. Appl. Phys. 44(51), L1550–L1552 (2005).
[Crossref]

Liang, H.

Longone, R.

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

Lv, J. M.

Mak, J.

D. Ashtiani, H. Venugopal, M. Belousoff, B. Spicer, J. Mak, A. Neild, and A. de Marco, “Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation,” J. Struct. Biol. 203(2), 94–101 (2018).
[Crossref] [PubMed]

Mancarella, F.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

Marshall, J. M.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Maurya, D. K.

M. Sridhar, D. K. Maurya, J. R. Friend, and L. Y. Yeo, “Focused ion beam milling of microchannels in lithium niobate,” Biomicrofluidics 6(1), 012819 (2012).
[Crossref] [PubMed]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Mechler, A.

J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler, “Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization,” Nanotechnology 19(14), 145301 (2008).
[Crossref] [PubMed]

Menin, A.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

Meroni, A.

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

Montanari, G. B.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

Neild, A.

D. Ashtiani, H. Venugopal, M. Belousoff, B. Spicer, J. Mak, A. Neild, and A. de Marco, “Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation,” J. Struct. Biol. 203(2), 94–101 (2018).
[Crossref] [PubMed]

Nubile, A.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

Pertsch, T.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Steinert, C. Schmidt, W. K. Chang, S. Fasold, D. Fussel, Y. H. Chen, and T. Pertsch, “Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes,” Opt. Mater. Express 5(9), 2081–2089 (2015).
[Crossref]

Peruzzo, A.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Ren, Z.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Sabac, A.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Sada, C.

M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: Recent developments and applications,” Appl. Phys. Rev. 2(4), 040603 (2015).
[Crossref]

Saravi, S.

Schmidt, C.

Schrempel, F.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
[Crossref]

Sergeyev, A.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

Setzpfandt, F.

Shilton, R.

R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, “Particle concentration and mixing in microdrops driven by focused surface acoustic waves,” J. Appl. Phys. 104(1), 014910 (2008).
[Crossref]

J. Friend, L. Yeo, M. Tan, and R. Shilton, “Concentration and mixing of particles in microdrops driven by focused surface acoustic waves,” IEEE Ultrasonics Symposium, 930–933 (2008).
[Crossref]

Si, G. Y.

G. Y. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. H. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Siew, S. Y.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

W. Sohler, “Integrated-Optics in LiNbO3,” Thin Solid Films 175, 191–200 (1989).
[Crossref]

Solntsev, A. S.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

Spajer, M.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Spicer, B.

D. Ashtiani, H. Venugopal, M. Belousoff, B. Spicer, J. Mak, A. Neild, and A. de Marco, “Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation,” J. Struct. Biol. 203(2), 94–101 (2018).
[Crossref] [PubMed]

Sridhar, M.

M. Sridhar, D. K. Maurya, J. R. Friend, and L. Y. Yeo, “Focused ion beam milling of microchannels in lithium niobate,” Biomicrofluidics 6(1), 012819 (2012).
[Crossref] [PubMed]

Steinert, M.

Stolojan, V.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

Sugliani, S.

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

Sukhorukov, A. A.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

Takigawa, R.

Tambasco, J. J.

Tan, M.

J. Friend, L. Yeo, M. Tan, and R. Shilton, “Concentration and mixing of particles in microdrops driven by focused surface acoustic waves,” IEEE Ultrasonics Symposium, 930–933 (2008).
[Crossref]

Tan, M. K.

M. K. Tan, L. Y. Yeo, and J. R. Friend, “Rapid fluid flow and mixing induced in microchannels using surface acoustic waves,” EPL- Europhys. Lett. 87(4), 47003 (2009).
[Crossref]

R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, “Particle concentration and mixing in microdrops driven by focused surface acoustic waves,” J. Appl. Phys. 104(1), 014910 (2008).
[Crossref]

Teng, J. H.

G. Y. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. H. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Teo, E. J.

G. Y. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. H. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Teo, S. L.

G. Y. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. H. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Terabe, K.

X. J. Li, K. Terabe, H. Hatano, and K. Kitamura, “Nano-domain engineering in LiNbO3 by focused ion beam,” Jpn. J. Appl. Phys. 44(51), L1550–L1552 (2005).
[Crossref]

Thomas, P. A.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Toyoda, N.

Tsai, C. S.

D. Y. Zang and C. S. Tsai, “Single-Mode Wave-Guide Microlenses and Microlens Arrays Fabrication in LiNbO3 Using Titanium Indiffused Proton-Exchange Technique,” Appl. Phys. Lett. 46(8), 703–705 (1985).
[Crossref]

Tunnermann, A.

R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
[Crossref]

Tünnermann, A.

Venugopal, H.

D. Ashtiani, H. Venugopal, M. Belousoff, B. Spicer, J. Mak, A. Neild, and A. de Marco, “Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation,” J. Struct. Biol. 203(2), 94–101 (2018).
[Crossref] [PubMed]

Vergani, P.

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

P. de Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
[Crossref]

Wan, S.

Wang, J.

Wang, K. M.

X. F. Xu, S. Yan, J. M. Xue, Y. G. Wang, K. M. Wang, and X. L. Wang, “Investigation of etching two-dimensional microhole lattice array on lithium niobate with focused ion beam for fabricating photonic crystals,” J. Vac. Sci. Technol. B 27(4), 1851–1855 (2009).
[Crossref]

Wang, X. L.

X. F. Xu, S. Yan, J. M. Xue, Y. G. Wang, K. M. Wang, and X. L. Wang, “Investigation of etching two-dimensional microhole lattice array on lithium niobate with focused ion beam for fabricating photonic crystals,” J. Vac. Sci. Technol. B 27(4), 1851–1855 (2009).
[Crossref]

Wang, Y. G.

X. F. Xu, S. Yan, J. M. Xue, Y. G. Wang, K. M. Wang, and X. L. Wang, “Investigation of etching two-dimensional microhole lattice array on lithium niobate with focused ion beam for fabricating photonic crystals,” J. Vac. Sci. Technol. B 27(4), 1851–1855 (2009).
[Crossref]

Webb, R. P.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium-Niobate - Summary of Physical-Properties and Crystal-Structure,” Appl. Phys. Adv. Mater. 37, 191–203 (1985).

Xu, B. X.

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Xu, J.

Xu, X. F.

X. F. Xu, S. Yan, J. M. Xue, Y. G. Wang, K. M. Wang, and X. L. Wang, “Investigation of etching two-dimensional microhole lattice array on lithium niobate with focused ion beam for fabricating photonic crystals,” J. Vac. Sci. Technol. B 27(4), 1851–1855 (2009).
[Crossref]

Xue, J. M.

X. F. Xu, S. Yan, J. M. Xue, Y. G. Wang, K. M. Wang, and X. L. Wang, “Investigation of etching two-dimensional microhole lattice array on lithium niobate with focused ion beam for fabricating photonic crystals,” J. Vac. Sci. Technol. B 27(4), 1851–1855 (2009).
[Crossref]

Yan, S.

X. F. Xu, S. Yan, J. M. Xue, Y. G. Wang, K. M. Wang, and X. L. Wang, “Investigation of etching two-dimensional microhole lattice array on lithium niobate with focused ion beam for fabricating photonic crystals,” J. Vac. Sci. Technol. B 27(4), 1851–1855 (2009).
[Crossref]

Yeo, L.

J. Friend, L. Yeo, M. Tan, and R. Shilton, “Concentration and mixing of particles in microdrops driven by focused surface acoustic waves,” IEEE Ultrasonics Symposium, 930–933 (2008).
[Crossref]

Yeo, L. Y.

M. Sridhar, D. K. Maurya, J. R. Friend, and L. Y. Yeo, “Focused ion beam milling of microchannels in lithium niobate,” Biomicrofluidics 6(1), 012819 (2012).
[Crossref] [PubMed]

J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
[Crossref]

M. K. Tan, L. Y. Yeo, and J. R. Friend, “Rapid fluid flow and mixing induced in microchannels using surface acoustic waves,” EPL- Europhys. Lett. 87(4), 47003 (2009).
[Crossref]

L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics 3(1), 012002 (2009).
[Crossref] [PubMed]

J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler, “Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization,” Nanotechnology 19(14), 145301 (2008).
[Crossref] [PubMed]

R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, “Particle concentration and mixing in microdrops driven by focused surface acoustic waves,” J. Appl. Phys. 104(1), 014910 (2008).
[Crossref]

H. Li, J. R. Friend, and L. Y. Yeo, “A scaffold cell seeding method driven by surface acoustic waves,” Biomaterials 28(28), 4098–4104 (2007).
[Crossref] [PubMed]

H. Li, J. R. Friend, and L. Y. Yeo, “Surface acoustic wave concentration of particle and bioparticle suspensions,” Biomed. Microdevices 9(5), 647–656 (2007).
[Crossref] [PubMed]

Yu, S.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Yuan, W. H.

Zang, D. Y.

D. Y. Zang and C. S. Tsai, “Single-Mode Wave-Guide Microlenses and Microlens Arrays Fabrication in LiNbO3 Using Titanium Indiffused Proton-Exchange Technique,” Appl. Phys. Lett. 46(8), 703–705 (1985).
[Crossref]

Zhang, G.

Ziegler, J. F.

J. F. Ziegler, “Stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).

ACS Photonics (1)

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Adv. Mater. (1)

R. S. Weis and T. K. Gaylord, “Lithium-Niobate - Summary of Physical-Properties and Crystal-Structure,” Appl. Phys. Adv. Mater. 37, 191–203 (1985).

Appl. Phys. B (1)

Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
[Crossref]

Appl. Phys. Lett. (1)

D. Y. Zang and C. S. Tsai, “Single-Mode Wave-Guide Microlenses and Microlens Arrays Fabrication in LiNbO3 Using Titanium Indiffused Proton-Exchange Technique,” Appl. Phys. Lett. 46(8), 703–705 (1985).
[Crossref]

Appl. Phys. Rev. (1)

M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: Recent developments and applications,” Appl. Phys. Rev. 2(4), 040603 (2015).
[Crossref]

Biomaterials (1)

H. Li, J. R. Friend, and L. Y. Yeo, “A scaffold cell seeding method driven by surface acoustic waves,” Biomaterials 28(28), 4098–4104 (2007).
[Crossref] [PubMed]

Biomed. Microdevices (1)

H. Li, J. R. Friend, and L. Y. Yeo, “Surface acoustic wave concentration of particle and bioparticle suspensions,” Biomed. Microdevices 9(5), 647–656 (2007).
[Crossref] [PubMed]

Biomicrofluidics (2)

L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics 3(1), 012002 (2009).
[Crossref] [PubMed]

M. Sridhar, D. K. Maurya, J. R. Friend, and L. Y. Yeo, “Focused ion beam milling of microchannels in lithium niobate,” Biomicrofluidics 6(1), 012819 (2012).
[Crossref] [PubMed]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

EPL- Europhys. Lett. (1)

M. K. Tan, L. Y. Yeo, and J. R. Friend, “Rapid fluid flow and mixing induced in microchannels using surface acoustic waves,” EPL- Europhys. Lett. 87(4), 47003 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

IEEE Sensors (1)

Z. Y. A. Al-Shibaany, Z. J. Choong, D. Huo, J. Hedley, and Z. X. Hu, “CNC Machining of Lithium Niobate for Rapid Prototyping of Sensors,” IEEE Sensors 2015, 442–445 (2015).

J. Appl. Phys. (4)

R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, “Particle concentration and mixing in microdrops driven by focused surface acoustic waves,” J. Appl. Phys. 104(1), 014910 (2008).
[Crossref]

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

J. F. Ziegler, “Stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85, 1249–1272 (1999).

J. Lightwave Technol. (1)

J. Struct. Biol. (1)

D. Ashtiani, H. Venugopal, M. Belousoff, B. Spicer, J. Mak, A. Neild, and A. de Marco, “Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation,” J. Struct. Biol. 203(2), 94–101 (2018).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (3)

X. F. Xu, S. Yan, J. M. Xue, Y. G. Wang, K. M. Wang, and X. L. Wang, “Investigation of etching two-dimensional microhole lattice array on lithium niobate with focused ion beam for fabricating photonic crystals,” J. Vac. Sci. Technol. B 27(4), 1851–1855 (2009).
[Crossref]

G. Y. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. H. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

R. Geiss, J. Brandt, H. Hartung, A. Tunnermann, T. Pertsch, E. B. Kley, and F. Schrempel, “Photonic microstructures in lithium niobate by potassium hydroxide-assisted ion beam-enhanced etching,” J. Vac. Sci. Technol. B 33(1), 010601 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

X. J. Li, K. Terabe, H. Hatano, and K. Kitamura, “Nano-domain engineering in LiNbO3 by focused ion beam,” Jpn. J. Appl. Phys. 44(51), L1550–L1552 (2005).
[Crossref]

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Micron (1)

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler, “Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization,” Nanotechnology 19(14), 145301 (2008).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. (1)

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27(8), 1421–1425 (2005).
[Crossref]

Opt. Mater. Express (2)

Proc. SPIE (1)

S. Sugliani, P. De Nicola, G. B. Montanari, A. Nubile, A. Menin, F. Mancarella, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, M. Chiarini, M. Bianconi, and G. G. Bentini, “High quality surface micromachining of LiNbO3 by ion implantation-assisted etching,” Proc. SPIE 8612, 86120E1 (2013).

Rev. Mod. Phys. (1)

J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
[Crossref]

Thin Solid Films (1)

W. Sohler, “Integrated-Optics in LiNbO3,” Thin Solid Films 175, 191–200 (1989).
[Crossref]

Other (1)

J. Friend, L. Yeo, M. Tan, and R. Shilton, “Concentration and mixing of particles in microdrops driven by focused surface acoustic waves,” IEEE Ultrasonics Symposium, 930–933 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Micro-optical components milled with Xe beam using a P-FIB. For focusing microlenses and micro-axicons, respectively: (a,b) Scanning electron microscopy (SEM) images with inlet showing magnified image of the component with the highest sag (stage tilt 52°); (c,d) surface profiles of the components with the highest sag measured with a white light optical profilometer; (e,f) Fitted profiles (spherical and linear) to selected components.
Fig. 2
Fig. 2 Focal spot characterization of selected lithium niobate microlenses with a diameter of 220 µm. Normalized intensity maps and profile cross-sections, respectively, for a lens with a (a,c) sag height of 6.46 µm and focal distance of 0.86 mm, (b,d) sag height of 10.62 µm and focal distance of 0.46 mm, (e,g) sag height of 14.92 µm and focal distance of 0.33 mm, and (f,h) sag height of 21.46 µm and focal distance of 0.23 mm. The profile cross-sections were taken along points of maximum intensity (denoted by A) and in case of (e,g) and (f,h) also ~10 µm upstream of the maximum intensity point (denoted by B).
Fig. 3
Fig. 3 Imaging of a reference sample, (a) Cu TEM grid (SEM image), using (b,c) lithium niobate microlenses with 220 µm diameter and with focal distances of 0.86 mm and 0.23 mm, respectively.
Fig. 4
Fig. 4 Optical characterisation of selected lithium niobate micro-axicons with a diameter of 220 µm. (a,b,c,d) Intensity map (log scale) from micro-axicons with sag heights of 6.34 µm, 10.65 µm, 15.16 µm and 21.56 µm, respectively. (e,f,g,h) Intensity maps of the areas of maximal intensity along the optical axis from axicons corresponding to (a,b,c,d). (i) Profile cross-sections of (a-d) denoted as 1-4 (Table 2), respectively.

Tables (2)

Tables Icon

Table 1 Summary of the lithium niobate microlenses optical characterization. Due to high aberrations, theoretical estimation of the focal distance of the lens 4 is uncertain

Tables Icon

Table 2 Summary of the lithium niobate micro-axicons optical characterization

Metrics