Abstract

Focused ion beam (FIB) systems based on high brightness plasma ion sources are becoming largely diffuse in material and semiconductor research, thanks to the higher current densities and milling rates provided by noble gas ions (e.g., Xe) compared with traditional liquid metal Ga FIBs. In this paper, we demonstrate the feasibility of a rapid, direct milling of microlenses in glass substrates using high current Xe plasma FIB. We present quantitative analyses of roughness and profile of microlenses with diameters up to 230-µm and focal distances between 7 mm and 1.4 mm. We characterized the performance of the lenses by mapping the transmitted intensity through the lenses, by forming an image of a resolution object by scanning the focused spot and collecting the transmitted intensity, and in full-field imaging experiments. The results indicate the applicability of plasma focused ion beam systems for direct writing in glass of high-quality micro-optical elements with diffraction-limited focusing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Refractive micro-lenses and micro-axicons in single-crystal lithium niobate

Sergey Gorelick and Alex de Marco
Opt. Express 26(24) 32324-32331 (2018)

Continuous-relief diffractive microlenses for laser beam focusing

Matthew Day, Kaushal Choonee, David Cox, Mark Thompson, Graham Marshall, and Alastair G. Sinclair
Opt. Express 25(22) 26987-26999 (2017)

Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam

Darren Freeman, Steve Madden, and Barry Luther-Davies
Opt. Express 13(8) 3079-3086 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
    [Crossref] [PubMed]
  2. J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
    [Crossref]
  3. K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
    [Crossref] [PubMed]
  4. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).
  5. M. B. Stern and T. R. Jay, “Dry-Etching for Coherent Refractive Microlens Arrays,” J Opt a-Pure Appl Op 8, S407– S429 (1994).
  6. I. S. Kang, J. S. Kim, M. C. Kang, and K. Y. Lee, “Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining,” J. Mater. Process. Technol. 201(1-3), 585–589 (2008).
    [Crossref]
  7. K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42(31), 6349–6359 (2003).
    [Crossref] [PubMed]
  8. G. C. Firestone and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays-an experimental study,” Appl. Opt. 44(29), 6115–6122 (2005).
    [Crossref] [PubMed]
  9. T. Hou, C. Zheng, S. Bai, Q. Ma, D. Bridges, A. Hu, and W. W. Duley, “Fabrication, characterization, and applications of microlenses,” Appl. Opt. 54(24), 7366–7376 (2015).
    [Crossref] [PubMed]
  10. Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
    [Crossref]
  11. Y. Q. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–516 (2001).
    [Crossref]
  12. F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
    [Crossref]
  13. M. Zaboub, A. Guessoum, N. E. Demagh, and A. Guermat, “Fabrication of polymer microlenses on single mode optical fibers for light coupling,” Opt. Commun. 366, 122–126 (2016).
    [Crossref]
  14. M. Day, K. Choonee, D. Cox, M. Thompson, G. Marshall, and A. G. Sinclair, “Continuous-relief diffractive microlenses for laser beam focusing,” Opt. Express 25(22), 26987–26999 (2017).
    [Crossref] [PubMed]
  15. M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
    [Crossref] [PubMed]
  16. Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
    [Crossref]
  17. S. Howe, W. R. Headley, D. C. Cox, G. Z. Mashanovich, D. J. Thomson, and G. T. Reed, “Fabrication & Tailoring of Silicon Photonic Devices via Focused Ion Beam,” Proc. SPIE 7220, 722011 (2009).
    [Crossref]
  18. R. M. de Ridder, W. C. L. Hopman, and F. Ay, “Focused-ion-beam processing for photonics,” in Proceedings of the 9th International Conference on Transparent Optical Networks (2007), pp. 212–215.
  19. N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
    [Crossref]
  20. L. Kwakman, G. Franz, M. Margrete, V. Taklo, A. Klumpp, and P. Ramm, “Characterization and Failure Analysis of 3D Integrated Systems using a novel plasma-FIB system,” AIP Conf. Proc. 1395, 269–273 (2011).
    [Crossref]
  21. Y. Q. Fu and N. K. A. Bryan, “Experimental study of microcylindrical lenses fabricated using focused-ion-beam technology,” J. Vac. Sci. Technol. B 19(4), 1259–1263 (2001).
    [Crossref]
  22. V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
    [Crossref]
  23. Y. Q. Fu and N. K. A. Bryan, “One-step maskless microfabrication of hybrid microlens by use of focused ion beam directly milling,” OSA Trends Opt. Photonics 75, 185–190 (2002).
  24. W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
    [Crossref]
  25. R. M. Langford, A. K. Petford-Long, M. Rommeswinkle, and S. Egelkamp, “Application of a focused ion beam system to micro and nanoengineering,” Mater. Sci. Technol. 18(7), 743–748 (2002).
    [Crossref]

2017 (1)

2016 (1)

M. Zaboub, A. Guessoum, N. E. Demagh, and A. Guermat, “Fabrication of polymer microlenses on single mode optical fibers for light coupling,” Opt. Commun. 366, 122–126 (2016).
[Crossref]

2015 (1)

2014 (1)

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

2011 (1)

L. Kwakman, G. Franz, M. Margrete, V. Taklo, A. Klumpp, and P. Ramm, “Characterization and Failure Analysis of 3D Integrated Systems using a novel plasma-FIB system,” AIP Conf. Proc. 1395, 269–273 (2011).
[Crossref]

2009 (2)

S. Howe, W. R. Headley, D. C. Cox, G. Z. Mashanovich, D. J. Thomson, and G. T. Reed, “Fabrication & Tailoring of Silicon Photonic Devices via Focused Ion Beam,” Proc. SPIE 7220, 722011 (2009).
[Crossref]

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

2008 (1)

I. S. Kang, J. S. Kim, M. C. Kang, and K. Y. Lee, “Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining,” J. Mater. Process. Technol. 201(1-3), 585–589 (2008).
[Crossref]

2007 (1)

W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
[Crossref]

2006 (2)

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

2005 (3)

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref] [PubMed]

Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
[Crossref]

G. C. Firestone and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays-an experimental study,” Appl. Opt. 44(29), 6115–6122 (2005).
[Crossref] [PubMed]

2004 (1)

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

2003 (2)

K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42(31), 6349–6359 (2003).
[Crossref] [PubMed]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

2002 (2)

R. M. Langford, A. K. Petford-Long, M. Rommeswinkle, and S. Egelkamp, “Application of a focused ion beam system to micro and nanoengineering,” Mater. Sci. Technol. 18(7), 743–748 (2002).
[Crossref]

Y. Q. Fu and N. K. A. Bryan, “One-step maskless microfabrication of hybrid microlens by use of focused ion beam directly milling,” OSA Trends Opt. Photonics 75, 185–190 (2002).

2001 (3)

Y. Q. Fu and N. K. A. Bryan, “Experimental study of microcylindrical lenses fabricated using focused-ion-beam technology,” J. Vac. Sci. Technol. B 19(4), 1259–1263 (2001).
[Crossref]

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Y. Q. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–516 (2001).
[Crossref]

2000 (1)

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

1994 (1)

M. B. Stern and T. R. Jay, “Dry-Etching for Coherent Refractive Microlens Arrays,” J Opt a-Pure Appl Op 8, S407– S429 (1994).

Aanesland, A.

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

Ay, F.

W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
[Crossref]

R. M. de Ridder, W. C. L. Hopman, and F. Ay, “Focused-ion-beam processing for photonics,” in Proceedings of the 9th International Conference on Transparent Optical Networks (2007), pp. 212–215.

Baets, R.

Bai, S.

Boswell, R. W.

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

Bridges, D.

Bronnimann, R.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Bryan, A.

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

Bryan, N. K. A.

Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
[Crossref]

Y. Q. Fu and N. K. A. Bryan, “One-step maskless microfabrication of hybrid microlens by use of focused ion beam directly milling,” OSA Trends Opt. Photonics 75, 185–190 (2002).

Y. Q. Fu and N. K. A. Bryan, “Experimental study of microcylindrical lenses fabricated using focused-ion-beam technology,” J. Vac. Sci. Technol. B 19(4), 1259–1263 (2001).
[Crossref]

Cabrini, S.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Callegari, V.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

Choonee, K.

Cojoc, D.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Cox, D.

Cox, D. C.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

S. Howe, W. R. Headley, D. C. Cox, G. Z. Mashanovich, D. J. Thomson, and G. T. Reed, “Fabrication & Tailoring of Silicon Photonic Devices via Focused Ion Beam,” Proc. SPIE 7220, 722011 (2009).
[Crossref]

Cox, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

Dandliker, R.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Day, M.

de Ridder, R. M.

W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
[Crossref]

R. M. de Ridder, W. C. L. Hopman, and F. Ay, “Focused-ion-beam processing for photonics,” in Proceedings of the 9th International Conference on Transparent Optical Networks (2007), pp. 212–215.

de Rooij, N. F.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

De Vittorio, M.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Degiorgio, V.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Demagh, N. E.

M. Zaboub, A. Guessoum, N. E. Demagh, and A. Guermat, “Fabrication of polymer microlenses on single mode optical fibers for light coupling,” Opt. Commun. 366, 122–126 (2016).
[Crossref]

Di Fabrizio, E.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Duley, W. W.

Egelkamp, S.

R. M. Langford, A. K. Petford-Long, M. Rommeswinkle, and S. Egelkamp, “Application of a focused ion beam system to micro and nanoengineering,” Mater. Sci. Technol. 18(7), 743–748 (2002).
[Crossref]

Firestone, G. C.

Franz, G.

L. Kwakman, G. Franz, M. Margrete, V. Taklo, A. Klumpp, and P. Ramm, “Characterization and Failure Analysis of 3D Integrated Systems using a novel plasma-FIB system,” AIP Conf. Proc. 1395, 269–273 (2011).
[Crossref]

Fu, Y. Q.

Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
[Crossref]

Y. Q. Fu and N. K. A. Bryan, “One-step maskless microfabrication of hybrid microlens by use of focused ion beam directly milling,” OSA Trends Opt. Photonics 75, 185–190 (2002).

Y. Q. Fu and N. K. A. Bryan, “Experimental study of microcylindrical lenses fabricated using focused-ion-beam technology,” J. Vac. Sci. Technol. B 19(4), 1259–1263 (2001).
[Crossref]

Y. Q. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–516 (2001).
[Crossref]

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

Gadgil, V. J.

W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
[Crossref]

Gerardino, A.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Guermat, A.

M. Zaboub, A. Guessoum, N. E. Demagh, and A. Guermat, “Fabrication of polymer microlenses on single mode optical fibers for light coupling,” Opt. Commun. 366, 122–126 (2016).
[Crossref]

Guessoum, A.

M. Zaboub, A. Guessoum, N. E. Demagh, and A. Guermat, “Fabrication of polymer microlenses on single mode optical fibers for light coupling,” Opt. Commun. 366, 122–126 (2016).
[Crossref]

Hahn, J. H.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref] [PubMed]

Headley, W. R.

S. Howe, W. R. Headley, D. C. Cox, G. Z. Mashanovich, D. J. Thomson, and G. T. Reed, “Fabrication & Tailoring of Silicon Photonic Devices via Focused Ion Beam,” Proc. SPIE 7220, 722011 (2009).
[Crossref]

Herzig, H. P.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Hopman, W. C. L.

W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
[Crossref]

R. M. de Ridder, W. C. L. Hopman, and F. Ay, “Focused-ion-beam processing for photonics,” in Proceedings of the 9th International Conference on Transparent Optical Networks (2007), pp. 212–215.

Hou, T.

Howe, S.

S. Howe, W. R. Headley, D. C. Cox, G. Z. Mashanovich, D. J. Thomson, and G. T. Reed, “Fabrication & Tailoring of Silicon Photonic Devices via Focused Ion Beam,” Proc. SPIE 7220, 722011 (2009).
[Crossref]

Hu, A.

Hu, W. B.

W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
[Crossref]

Iwaniuk, D.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Jay, T. R.

M. B. Stern and T. R. Jay, “Dry-Etching for Coherent Refractive Microlens Arrays,” J Opt a-Pure Appl Op 8, S407– S429 (1994).

Kang, I. S.

I. S. Kang, J. S. Kim, M. C. Kang, and K. Y. Lee, “Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining,” J. Mater. Process. Technol. 201(1-3), 585–589 (2008).
[Crossref]

Kang, M. C.

I. S. Kang, J. S. Kim, M. C. Kang, and K. Y. Lee, “Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining,” J. Mater. Process. Technol. 201(1-3), 585–589 (2008).
[Crossref]

Kellogg, S. M.

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

Kim, J. S.

I. S. Kang, J. S. Kim, M. C. Kang, and K. Y. Lee, “Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining,” J. Mater. Process. Technol. 201(1-3), 585–589 (2008).
[Crossref]

Kinion, D. E.

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

Klumpp, A.

L. Kwakman, G. Franz, M. Margrete, V. Taklo, A. Klumpp, and P. Ramm, “Characterization and Failure Analysis of 3D Integrated Systems using a novel plasma-FIB system,” AIP Conf. Proc. 1395, 269–273 (2011).
[Crossref]

Kok, N.

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

Kuipers, L.

W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
[Crossref]

Kumar, R.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Kwakman, L.

L. Kwakman, G. Franz, M. Margrete, V. Taklo, A. Klumpp, and P. Ramm, “Characterization and Failure Analysis of 3D Integrated Systems using a novel plasma-FIB system,” AIP Conf. Proc. 1395, 269–273 (2011).
[Crossref]

Langford, R. M.

R. M. Langford, A. K. Petford-Long, M. Rommeswinkle, and S. Egelkamp, “Application of a focused ion beam system to micro and nanoengineering,” Mater. Sci. Technol. 18(7), 743–748 (2002).
[Crossref]

Langridge, M. T.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

Lee, K. Y.

I. S. Kang, J. S. Kim, M. C. Kang, and K. Y. Lee, “Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining,” J. Mater. Process. Technol. 201(1-3), 585–589 (2008).
[Crossref]

Lim, K.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref] [PubMed]

Ma, Q.

Margrete, M.

L. Kwakman, G. Franz, M. Margrete, V. Taklo, A. Klumpp, and P. Ramm, “Characterization and Failure Analysis of 3D Integrated Systems using a novel plasma-FIB system,” AIP Conf. Proc. 1395, 269–273 (2011).
[Crossref]

Marshall, G.

Mashanovich, G. Z.

S. Howe, W. R. Headley, D. C. Cox, G. Z. Mashanovich, D. J. Thomson, and G. T. Reed, “Fabrication & Tailoring of Silicon Photonic Devices via Focused Ion Beam,” Proc. SPIE 7220, 722011 (2009).
[Crossref]

Miyashita, T.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

Naessens, K.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42(31), 6349–6359 (2003).
[Crossref] [PubMed]

Ngoi, B. K. A.

Y. Q. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–516 (2001).
[Crossref]

Ottevaere, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42(31), 6349–6359 (2003).
[Crossref] [PubMed]

Petford-Long, A. K.

R. M. Langford, A. K. Petford-Long, M. Rommeswinkle, and S. Egelkamp, “Application of a focused ion beam system to micro and nanoengineering,” Mater. Sci. Technol. 18(7), 743–748 (2002).
[Crossref]

Pollnau, M.

W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
[Crossref]

Prasciolu, M.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Ramm, P.

L. Kwakman, G. Franz, M. Margrete, V. Taklo, A. Klumpp, and P. Ramm, “Characterization and Failure Analysis of 3D Integrated Systems using a novel plasma-FIB system,” AIP Conf. Proc. 1395, 269–273 (2011).
[Crossref]

Reed, G. T.

S. Howe, W. R. Headley, D. C. Cox, G. Z. Mashanovich, D. J. Thomson, and G. T. Reed, “Fabrication & Tailoring of Silicon Photonic Devices via Focused Ion Beam,” Proc. SPIE 7220, 722011 (2009).
[Crossref]

Ro, K. W.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref] [PubMed]

Rommeswinkle, M.

R. M. Langford, A. K. Petford-Long, M. Rommeswinkle, and S. Egelkamp, “Application of a focused ion beam system to micro and nanoengineering,” Mater. Sci. Technol. 18(7), 743–748 (2002).
[Crossref]

Roulet, J. C.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Schiappelli, F.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Schmid, E.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Sennhauser, U.

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

Shim, B. C.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref] [PubMed]

Sinclair, A. G.

Skoczylas, W. P.

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

Smith, N. S.

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

Stern, M. B.

M. B. Stern and T. R. Jay, “Dry-Etching for Coherent Refractive Microlens Arrays,” J Opt a-Pure Appl Op 8, S407– S429 (1994).

Stolojan, V.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

Sutherland, O.

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

Taghizadeh, M.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

Taklo, V.

L. Kwakman, G. Franz, M. Margrete, V. Taklo, A. Klumpp, and P. Ramm, “Characterization and Failure Analysis of 3D Integrated Systems using a novel plasma-FIB system,” AIP Conf. Proc. 1395, 269–273 (2011).
[Crossref]

Tesch, P. P.

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

Thienpont, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42(31), 6349–6359 (2003).
[Crossref] [PubMed]

Thompson, M.

Thomson, D. J.

S. Howe, W. R. Headley, D. C. Cox, G. Z. Mashanovich, D. J. Thomson, and G. T. Reed, “Fabrication & Tailoring of Silicon Photonic Devices via Focused Ion Beam,” Proc. SPIE 7220, 722011 (2009).
[Crossref]

Van Daele, P.

Verpoorte, E.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Visimberga, G.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Volkel, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Webb, R. P.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

Woo, H. J.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

Yi, A. Y.

Zaboub, M.

M. Zaboub, A. Guessoum, N. E. Demagh, and A. Guermat, “Fabrication of polymer microlenses on single mode optical fibers for light coupling,” Opt. Commun. 366, 122–126 (2016).
[Crossref]

Zheng, C.

AIP Conf. Proc. (1)

L. Kwakman, G. Franz, M. Margrete, V. Taklo, A. Klumpp, and P. Ramm, “Characterization and Failure Analysis of 3D Integrated Systems using a novel plasma-FIB system,” AIP Conf. Proc. 1395, 269–273 (2011).
[Crossref]

Anal. Chem. (1)

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

Y. Q. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B 80(4-5), 581–585 (2005).
[Crossref]

J Opt a-Pure Appl Op (1)

M. B. Stern and T. R. Jay, “Dry-Etching for Coherent Refractive Microlens Arrays,” J Opt a-Pure Appl Op 8, S407– S429 (1994).

J. Mater. Process. Technol. (1)

I. S. Kang, J. S. Kim, M. C. Kang, and K. Y. Lee, “Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining,” J. Mater. Process. Technol. 201(1-3), 585–589 (2008).
[Crossref]

J. Microelectromech. Syst. (1)

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

J. Micromech. Microeng. (1)

V. Callegari, D. Iwaniuk, R. Bronnimann, E. Schmid, and U. Sennhauser, “Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres,” J. Micromech. Microeng. 19(10), 107003 (2009).
[Crossref]

J. Vac. Sci. Technol. B (2)

Y. Q. Fu and N. K. A. Bryan, “Experimental study of microcylindrical lenses fabricated using focused-ion-beam technology,” J. Vac. Sci. Technol. B 19(4), 1259–1263 (2001).
[Crossref]

N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, “High brightness inductively coupled plasma source for high current focused ion beam applications,” J. Vac. Sci. Technol. B 24(6), 2902–2906 (2006).
[Crossref]

Lab Chip (1)

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

Mater. Sci. Technol. (1)

R. M. Langford, A. K. Petford-Long, M. Rommeswinkle, and S. Egelkamp, “Application of a focused ion beam system to micro and nanoengineering,” Mater. Sci. Technol. 18(7), 743–748 (2002).
[Crossref]

Microelectron. Eng. (2)

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Micron (1)

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

W. C. L. Hopman, F. Ay, W. B. Hu, V. J. Gadgil, L. Kuipers, M. Pollnau, and R. M. de Ridder, “Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon,” Nanotechnology 18(19), 195305 (2007).
[Crossref]

Opt. Commun. (1)

M. Zaboub, A. Guessoum, N. E. Demagh, and A. Guermat, “Fabrication of polymer microlenses on single mode optical fibers for light coupling,” Opt. Commun. 366, 122–126 (2016).
[Crossref]

Opt. Eng. (2)

Y. Q. Fu and B. K. A. Ngoi, “Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology,” Opt. Eng. 40(4), 511–516 (2001).
[Crossref]

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Opt. Eng. 33, 3547–3551 (2006).

Opt. Express (1)

OSA Trends Opt. Photonics (1)

Y. Q. Fu and N. K. A. Bryan, “One-step maskless microfabrication of hybrid microlens by use of focused ion beam directly milling,” OSA Trends Opt. Photonics 75, 185–190 (2002).

Proc. SPIE (1)

S. Howe, W. R. Headley, D. C. Cox, G. Z. Mashanovich, D. J. Thomson, and G. T. Reed, “Fabrication & Tailoring of Silicon Photonic Devices via Focused Ion Beam,” Proc. SPIE 7220, 722011 (2009).
[Crossref]

Other (1)

R. M. de Ridder, W. C. L. Hopman, and F. Ay, “Focused-ion-beam processing for photonics,” in Proceedings of the 9th International Conference on Transparent Optical Networks (2007), pp. 212–215.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Pattern for milling microlens in glass with P-FIB is a) a parabolic profile where lateral pixels represent the position of the beam and the value of the pixels is proportional to the amount of material to be milled away. b) The patterns are 8-bit bitmap images. To reduce digitalization errors, the pattern is raster-scanned in three steps with each step the pattern rotated by 120°. The procedure is repeated until the desired mill depth is achieved.
Fig. 2
Fig. 2 Scanning electron microscopy (SEM) images of a) overview of different microlenses milled into the glass substrate using P-FIB at 60 and 200 nA of Xe beam current and b) cross-section view revealing the profile of a 55-µm microlens. SEM stage tilt is 52°. c) Parabolic fit to the measured profile of the lens from (b).
Fig. 3
Fig. 3 The surface profile of 230-µm microlenses with a) 7.3 µm, b) 9 µm and c) 13.2 µm sag height, respectively. The lenses were milled at 200 nA current of 30 keV Xe ions. The profiles were measured with a white light optical profilometer. d) Comparison of profile curves measured with the optical profilometer for the microlenses in a), b) and c). Parabolas were fitted to the profiles to estimate the radius of curvature on the lenses’ profiles. (e,f,g) Surface roughness map of the lenses shown in a), b) and c), respectively.
Fig. 4
Fig. 4 Focusing properties characterization of microlenses by mapping the intensity at different planes around the focus (a-c, a microlens with a sag height 7.3 µm) (d,e,f,g). Cross-sectional view through the focused beam for microlenses with 7.3 µm, 9 µm, 13.2 µm and 1.8 µm sag height, respectively. Some misalignments in the figures are due to the mechanical drift and vibrations. h) Comparison of intensity profiles at the focus of the microlenses with the corresponding Airy function fit.
Fig. 5
Fig. 5 Imaging characterization of the glass microlenses using a Cu TEM grid (a) as a reference sample (the insert shows a tilted (45°) image of Cu bars). (b and c) The image was formed by raster scanning a beam focused by L01 and L03 lenses from Table 1, respectively, across selected regions in the reference sample. d) The object was illuminated with a coherent laser beam through a 200-µm aperture and imaged using an objective. (e and f) Microlenses L01 and L03 (Table 1), respectively, were inserted to form a magnified image of the sample. (g,h,i) are similar to (d,e,f) respectively, with the images formed using incoherent light source (LED) and not using the aperture.

Tables (1)

Tables Icon

Table 1 Summary of the microlenses optical characterization. The designed

Metrics