Abstract

The applicability of optical transition radiation (OTR) for measurements of micron sized transverse electron beam profiles is limited not only by the optical system resolution which has a fundamental limit imposed by the uncertainty principle. In the case of OTR generation, a single electron crossing the boundary between vacuum and screen cannot be considered as a single emitting point with isotropic angular distribution. On the contrary, the radiation is emitted from an area with a transverse range that is defined by the radial extension of the electron’s Lorentz contracted Coulomb field and is typically estimated as γλ (with γ the Lorentz factor and λ the wavelength of observation). The OTR angular distribution has a characteristic “funnel” shape. As a result the one-dimensional image of a single electron measured with an ideal thin lens has a double lobe shape, and the resolution of any OTR based imaging system is determined by this double lobe function which is also known as OTR Point Spread Function (PSF). As a consequence, the reconstruction of micron sized electron beam profiles is hampered not only due to the fundamental diffraction limit, but also due to the PSF lobe shape. In this paper we present two approaches to improve the spatial resolution of an OTR monitor based on asymmetric light collection using a traditional optical system which allows blocking of one of the lobes. With such a scheme, an OTR PSF can be achieved that is comparable to the one of an ideal point source (Airy distribution).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
A novel simulation and analysis algorithm for high resolution optical transition radiation imaging

J. Wolfenden, R. B. Fiorito, and C. P. Welsch
Opt. Express 27(3) 2988-2999 (2019)

Correlated electron beam microbunching and shot-noise characterization with near- and far-field optical transition radiation

Ariel Nause, Reuven Ianconescu, and Avraham Gover
J. Opt. Soc. Am. B 35(11) 2869-2875 (2018)

Exact theory of optical transition radiation in the far and near zones

Ariel Nause, Egor Dyunin, Reuven Ianconescu, and Avraham Gover
J. Opt. Soc. Am. B 31(10) 2438-2445 (2014)

References

  • View by:

  1. L. Wartski, S. Roland, J. Lasalle, M. Bolore, and G. Filippi, “Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple‐scattering measurements,” J. Appl. Phys. 46(8), 3644–3653 (1975).
    [Crossref]
  2. A. H. Lumpkin, B. X. Yang, W. J. Berg, M. White, J. W. Lewellen, and S. V. Milton, “Optical techniques for electron-beam characterizations on the APS SASE FEL project,” Nucl. Instrum. Meth. Phys. Res. A 429(1-3), 336–340 (1999).
    [Crossref]
  3. M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).
  4. M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
    [Crossref]
  5. E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Klystron instability of a relativistic electron beam in a bunch compressor,” Nucl. Instrum. Meth. A 490(1-2), 1–8 (2002).
    [Crossref]
  6. M. Castellano and V. Verzilov, “Spatial resolution in optical transition radiation beam diagnostics,” Phys. Rev. STAB 1, 062801 (1998).
  7. A. P. Potylitsyn, “Image of optical diffraction radiation (ODR) source and spatial resolution of ODR beam profile monitor,”Advanced Radiation Sources and Applications, NATO Science Series II: Mathematics, Physics and Chemistry, Springer, N. Y 199, 149–163 (2006).
  8. G. Kube, “Imaging with optical transition radiation, transverse beam diagnostics for the XFEL,” Report No. TESLA-FEL, (2008).
  9. M. L. Ter-Mikaelyan, High Energy Electromagnetic Processes Condensed Media (Wiley).
  10. V. A. Verzilov, “Transition radiation in the pre-wave zone,” Phys. Lett. A 273(1-2), 135–140 (2000), doi:.
    [Crossref]
  11. P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).
  12. F. G. Bisesto, M. Castellano, E. Chiadroni, and A. Cianchi, “Zemax simulations describing collective effects in transition and diffraction radiation,” Opt. Express 26(4), 5075–5082 (2018).
    [Crossref] [PubMed]
  13. L. G. Sukhikh, G. Kube, and A. P. Potylitsyn, “Simulation of transition radiation based beam imaging from tilted targets,” Phys. Rev. Accel. Beams 20(3), 032802 (2017).
    [Crossref]
  14. X. Artru, R. Chehab, K. Honkavaara, and A. Variola, “Resolution power of optical transition radiation. Theoretical considerations,” Nucl. Instrum. Meth. B 145(1-2), 160–168 (1998).
    [Crossref]
  15. M. Born and E. Wolf, Principles of Optics (Pergamon Press Ltd).
  16. P. Karataev, A. Aryshev, S. Boogert, D. Howell, N. Terunuma, and J. Urakawa, “First observation of the point spread function of optical transition radiation,” Phys. Rev. Lett. 107(17), 174801 (2011).
    [Crossref] [PubMed]
  17. K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
    [Crossref]
  18. M. V. Tsarev and P. Baum, “Characterization of non-relativistic attosecond electron pulses by transition radiation from tilted surfaces,” New J. Phys. 20(3), 033002 (2018).
    [Crossref]
  19. L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Popov, and A. P. Potylitsyn, “Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostics,” Phys. Rev. STAB 17, 112805 (2014).
  20. https://www.sony-semicon.co.jp/products_en/IS/sensor0/industry/products/industry.html.

2018 (2)

F. G. Bisesto, M. Castellano, E. Chiadroni, and A. Cianchi, “Zemax simulations describing collective effects in transition and diffraction radiation,” Opt. Express 26(4), 5075–5082 (2018).
[Crossref] [PubMed]

M. V. Tsarev and P. Baum, “Characterization of non-relativistic attosecond electron pulses by transition radiation from tilted surfaces,” New J. Phys. 20(3), 033002 (2018).
[Crossref]

2017 (1)

L. G. Sukhikh, G. Kube, and A. P. Potylitsyn, “Simulation of transition radiation based beam imaging from tilted targets,” Phys. Rev. Accel. Beams 20(3), 032802 (2017).
[Crossref]

2014 (2)

L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Popov, and A. P. Potylitsyn, “Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostics,” Phys. Rev. STAB 17, 112805 (2014).

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

2011 (1)

P. Karataev, A. Aryshev, S. Boogert, D. Howell, N. Terunuma, and J. Urakawa, “First observation of the point spread function of optical transition radiation,” Phys. Rev. Lett. 107(17), 174801 (2011).
[Crossref] [PubMed]

2008 (1)

P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).

2006 (1)

A. P. Potylitsyn, “Image of optical diffraction radiation (ODR) source and spatial resolution of ODR beam profile monitor,”Advanced Radiation Sources and Applications, NATO Science Series II: Mathematics, Physics and Chemistry, Springer, N. Y 199, 149–163 (2006).

2002 (3)

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Klystron instability of a relativistic electron beam in a bunch compressor,” Nucl. Instrum. Meth. A 490(1-2), 1–8 (2002).
[Crossref]

2000 (1)

V. A. Verzilov, “Transition radiation in the pre-wave zone,” Phys. Lett. A 273(1-2), 135–140 (2000), doi:.
[Crossref]

1999 (1)

A. H. Lumpkin, B. X. Yang, W. J. Berg, M. White, J. W. Lewellen, and S. V. Milton, “Optical techniques for electron-beam characterizations on the APS SASE FEL project,” Nucl. Instrum. Meth. Phys. Res. A 429(1-3), 336–340 (1999).
[Crossref]

1998 (2)

M. Castellano and V. Verzilov, “Spatial resolution in optical transition radiation beam diagnostics,” Phys. Rev. STAB 1, 062801 (1998).

X. Artru, R. Chehab, K. Honkavaara, and A. Variola, “Resolution power of optical transition radiation. Theoretical considerations,” Nucl. Instrum. Meth. B 145(1-2), 160–168 (1998).
[Crossref]

1975 (1)

L. Wartski, S. Roland, J. Lasalle, M. Bolore, and G. Filippi, “Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple‐scattering measurements,” J. Appl. Phys. 46(8), 3644–3653 (1975).
[Crossref]

Anderson, S.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Araki, S.

P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).

Artru, X.

X. Artru, R. Chehab, K. Honkavaara, and A. Variola, “Resolution power of optical transition radiation. Theoretical considerations,” Nucl. Instrum. Meth. B 145(1-2), 160–168 (1998).
[Crossref]

Aryshev, A.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

P. Karataev, A. Aryshev, S. Boogert, D. Howell, N. Terunuma, and J. Urakawa, “First observation of the point spread function of optical transition radiation,” Phys. Rev. Lett. 107(17), 174801 (2011).
[Crossref] [PubMed]

P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).

Bajt, S.

L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Popov, and A. P. Potylitsyn, “Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostics,” Phys. Rev. STAB 17, 112805 (2014).

Baum, P.

M. V. Tsarev and P. Baum, “Characterization of non-relativistic attosecond electron pulses by transition radiation from tilted surfaces,” New J. Phys. 20(3), 033002 (2018).
[Crossref]

Berg, W. J.

A. H. Lumpkin, B. X. Yang, W. J. Berg, M. White, J. W. Lewellen, and S. V. Milton, “Optical techniques for electron-beam characterizations on the APS SASE FEL project,” Nucl. Instrum. Meth. Phys. Res. A 429(1-3), 336–340 (1999).
[Crossref]

Bharadwaj, V.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Bisesto, F. G.

Bolore, M.

L. Wartski, S. Roland, J. Lasalle, M. Bolore, and G. Filippi, “Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple‐scattering measurements,” J. Appl. Phys. 46(8), 3644–3653 (1975).
[Crossref]

Bolzon, B.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

Boogert, S.

P. Karataev, A. Aryshev, S. Boogert, D. Howell, N. Terunuma, and J. Urakawa, “First observation of the point spread function of optical transition radiation,” Phys. Rev. Lett. 107(17), 174801 (2011).
[Crossref] [PubMed]

Boogert, S. T.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

Borland, M.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Castellano, M.

Chae, Y. C.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Chehab, R.

X. Artru, R. Chehab, K. Honkavaara, and A. Variola, “Resolution power of optical transition radiation. Theoretical considerations,” Nucl. Instrum. Meth. B 145(1-2), 160–168 (1998).
[Crossref]

Chiadroni, E.

Cianchi, A.

Emma, P.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Fawley, W. M.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Filippi, G.

L. Wartski, S. Roland, J. Lasalle, M. Bolore, and G. Filippi, “Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple‐scattering measurements,” J. Appl. Phys. 46(8), 3644–3653 (1975).
[Crossref]

Frisch, J.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Hayano, H.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Honkavaara, K.

X. Artru, R. Chehab, K. Honkavaara, and A. Variola, “Resolution power of optical transition radiation. Theoretical considerations,” Nucl. Instrum. Meth. B 145(1-2), 160–168 (1998).
[Crossref]

Howell, D.

P. Karataev, A. Aryshev, S. Boogert, D. Howell, N. Terunuma, and J. Urakawa, “First observation of the point spread function of optical transition radiation,” Phys. Rev. Lett. 107(17), 174801 (2011).
[Crossref] [PubMed]

Jobe, K.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Karataev, P.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

P. Karataev, A. Aryshev, S. Boogert, D. Howell, N. Terunuma, and J. Urakawa, “First observation of the point spread function of optical transition radiation,” Phys. Rev. Lett. 107(17), 174801 (2011).
[Crossref] [PubMed]

P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).

Krejcik, P.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Kruchinin, K.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

Kube, G.

L. G. Sukhikh, G. Kube, and A. P. Potylitsyn, “Simulation of transition radiation based beam imaging from tilted targets,” Phys. Rev. Accel. Beams 20(3), 032802 (2017).
[Crossref]

L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Popov, and A. P. Potylitsyn, “Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostics,” Phys. Rev. STAB 17, 112805 (2014).

Lasalle, J.

L. Wartski, S. Roland, J. Lasalle, M. Bolore, and G. Filippi, “Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple‐scattering measurements,” J. Appl. Phys. 46(8), 3644–3653 (1975).
[Crossref]

Lauth, W.

L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Popov, and A. P. Potylitsyn, “Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostics,” Phys. Rev. STAB 17, 112805 (2014).

Lefevre, T.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

Lewellen, J. W.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

A. H. Lumpkin, B. X. Yang, W. J. Berg, M. White, J. W. Lewellen, and S. V. Milton, “Optical techniques for electron-beam characterizations on the APS SASE FEL project,” Nucl. Instrum. Meth. Phys. Res. A 429(1-3), 336–340 (1999).
[Crossref]

Limborg, C.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Lumpkin, A. H.

A. H. Lumpkin, B. X. Yang, W. J. Berg, M. White, J. W. Lewellen, and S. V. Milton, “Optical techniques for electron-beam characterizations on the APS SASE FEL project,” Nucl. Instrum. Meth. Phys. Res. A 429(1-3), 336–340 (1999).
[Crossref]

Mazzoni, S.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

McCormick, D.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

McKee, B.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Milton, S. V.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

A. H. Lumpkin, B. X. Yang, W. J. Berg, M. White, J. W. Lewellen, and S. V. Milton, “Optical techniques for electron-beam characterizations on the APS SASE FEL project,” Nucl. Instrum. Meth. Phys. Res. A 429(1-3), 336–340 (1999).
[Crossref]

Naito, T.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Naumenko, G.

P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).

Nelson, J.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Nevay, L. J.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

Nuhn, H. D.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Popov, Yu. A.

L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Popov, and A. P. Potylitsyn, “Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostics,” Phys. Rev. STAB 17, 112805 (2014).

Potylitsyn, A.

P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).

Potylitsyn, A. P.

L. G. Sukhikh, G. Kube, and A. P. Potylitsyn, “Simulation of transition radiation based beam imaging from tilted targets,” Phys. Rev. Accel. Beams 20(3), 032802 (2017).
[Crossref]

L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Popov, and A. P. Potylitsyn, “Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostics,” Phys. Rev. STAB 17, 112805 (2014).

A. P. Potylitsyn, “Image of optical diffraction radiation (ODR) source and spatial resolution of ODR beam profile monitor,”Advanced Radiation Sources and Applications, NATO Science Series II: Mathematics, Physics and Chemistry, Springer, N. Y 199, 149–163 (2006).

Roland, S.

L. Wartski, S. Roland, J. Lasalle, M. Bolore, and G. Filippi, “Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple‐scattering measurements,” J. Appl. Phys. 46(8), 3644–3653 (1975).
[Crossref]

Ross, M.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Saldin, E.

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Klystron instability of a relativistic electron beam in a bunch compressor,” Nucl. Instrum. Meth. A 490(1-2), 1–8 (2002).
[Crossref]

Schneidmiller, E. A.

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Klystron instability of a relativistic electron beam in a bunch compressor,” Nucl. Instrum. Meth. A 490(1-2), 1–8 (2002).
[Crossref]

Shevelev, M.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

Smith, T.

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Soliday, R.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Sukhikh, L. G.

L. G. Sukhikh, G. Kube, and A. P. Potylitsyn, “Simulation of transition radiation based beam imaging from tilted targets,” Phys. Rev. Accel. Beams 20(3), 032802 (2017).
[Crossref]

L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Popov, and A. P. Potylitsyn, “Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostics,” Phys. Rev. STAB 17, 112805 (2014).

Terunuma, N.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

P. Karataev, A. Aryshev, S. Boogert, D. Howell, N. Terunuma, and J. Urakawa, “First observation of the point spread function of optical transition radiation,” Phys. Rev. Lett. 107(17), 174801 (2011).
[Crossref] [PubMed]

P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

Tsarev, M. V.

M. V. Tsarev and P. Baum, “Characterization of non-relativistic attosecond electron pulses by transition radiation from tilted surfaces,” New J. Phys. 20(3), 033002 (2018).
[Crossref]

Urakawa, J.

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

P. Karataev, A. Aryshev, S. Boogert, D. Howell, N. Terunuma, and J. Urakawa, “First observation of the point spread function of optical transition radiation,” Phys. Rev. Lett. 107(17), 174801 (2011).
[Crossref] [PubMed]

P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).

Variola, A.

X. Artru, R. Chehab, K. Honkavaara, and A. Variola, “Resolution power of optical transition radiation. Theoretical considerations,” Nucl. Instrum. Meth. B 145(1-2), 160–168 (1998).
[Crossref]

Verzilov, V.

M. Castellano and V. Verzilov, “Spatial resolution in optical transition radiation beam diagnostics,” Phys. Rev. STAB 1, 062801 (1998).

Verzilov, V. A.

V. A. Verzilov, “Transition radiation in the pre-wave zone,” Phys. Lett. A 273(1-2), 135–140 (2000), doi:.
[Crossref]

Wartski, L.

L. Wartski, S. Roland, J. Lasalle, M. Bolore, and G. Filippi, “Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple‐scattering measurements,” J. Appl. Phys. 46(8), 3644–3653 (1975).
[Crossref]

White, M.

A. H. Lumpkin, B. X. Yang, W. J. Berg, M. White, J. W. Lewellen, and S. V. Milton, “Optical techniques for electron-beam characterizations on the APS SASE FEL project,” Nucl. Instrum. Meth. Phys. Res. A 429(1-3), 336–340 (1999).
[Crossref]

Woodley, M.

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

Yang, B. X.

A. H. Lumpkin, B. X. Yang, W. J. Berg, M. White, J. W. Lewellen, and S. V. Milton, “Optical techniques for electron-beam characterizations on the APS SASE FEL project,” Nucl. Instrum. Meth. Phys. Res. A 429(1-3), 336–340 (1999).
[Crossref]

Yurkov, M. V.

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Klystron instability of a relativistic electron beam in a bunch compressor,” Nucl. Instrum. Meth. A 490(1-2), 1–8 (2002).
[Crossref]

Advanced Radiation Sources and Applications, NATO Science Series II: Mathematics, Physics and Chemistry, Springer, N. Y (1)

A. P. Potylitsyn, “Image of optical diffraction radiation (ODR) source and spatial resolution of ODR beam profile monitor,”Advanced Radiation Sources and Applications, NATO Science Series II: Mathematics, Physics and Chemistry, Springer, N. Y 199, 149–163 (2006).

in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., (1)

M. Ross, S. Anderson, J. Frisch, K. Jobe, D. McCormick, B. McKee, J. Nelson, T. Smith, H. Hayano, T. Naito, and N. Terunuma, “High resolution optical transition radiation beam profile monitor,” in Proceedings of Beam Instrumentation Workshop BIW 02, Upton (New York), AIP Conf. Proc., 648, 237 (2002).

J. Appl. Phys. (1)

L. Wartski, S. Roland, J. Lasalle, M. Bolore, and G. Filippi, “Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple‐scattering measurements,” J. Appl. Phys. 46(8), 3644–3653 (1975).
[Crossref]

J. Phys. Conf. Ser. (1)

K. Kruchinin, A. Aryshev, P. Karataev, B. Bolzon, T. Lefevre, S. Mazzoni, M. Shevelev, S. T. Boogert, L. J. Nevay, N. Terunuma, and J. Urakawa, “Sub-micrometer transverse beam size diagnostics using optical transition radiation,” J. Phys. Conf. Ser. 517, 012011 (2014).
[Crossref]

New J. Phys. (1)

M. V. Tsarev and P. Baum, “Characterization of non-relativistic attosecond electron pulses by transition radiation from tilted surfaces,” New J. Phys. 20(3), 033002 (2018).
[Crossref]

Nucl. Instrum. Meth. A (2)

M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V. Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V. Milton, H. D. Nuhn, R. Soliday, and M. Woodley, “Start-to-end simulation of selfamplified spontaneous emission free electron lasers from the gun through the undulator,” Nucl. Instrum. Meth. A 483(1-2), 268–272 (2002).
[Crossref]

E. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Klystron instability of a relativistic electron beam in a bunch compressor,” Nucl. Instrum. Meth. A 490(1-2), 1–8 (2002).
[Crossref]

Nucl. Instrum. Meth. B (1)

X. Artru, R. Chehab, K. Honkavaara, and A. Variola, “Resolution power of optical transition radiation. Theoretical considerations,” Nucl. Instrum. Meth. B 145(1-2), 160–168 (1998).
[Crossref]

Nucl. Instrum. Meth. Phys. Res. A (1)

A. H. Lumpkin, B. X. Yang, W. J. Berg, M. White, J. W. Lewellen, and S. V. Milton, “Optical techniques for electron-beam characterizations on the APS SASE FEL project,” Nucl. Instrum. Meth. Phys. Res. A 429(1-3), 336–340 (1999).
[Crossref]

Opt. Express (1)

Phys. Lett. A (1)

V. A. Verzilov, “Transition radiation in the pre-wave zone,” Phys. Lett. A 273(1-2), 135–140 (2000), doi:.
[Crossref]

Phys. Rev. Accel. Beams (1)

L. G. Sukhikh, G. Kube, and A. P. Potylitsyn, “Simulation of transition radiation based beam imaging from tilted targets,” Phys. Rev. Accel. Beams 20(3), 032802 (2017).
[Crossref]

Phys. Rev. Lett. (1)

P. Karataev, A. Aryshev, S. Boogert, D. Howell, N. Terunuma, and J. Urakawa, “First observation of the point spread function of optical transition radiation,” Phys. Rev. Lett. 107(17), 174801 (2011).
[Crossref] [PubMed]

Phys. Rev. STAB (3)

P. Karataev, S. Araki, A. Aryshev, G. Naumenko, A. Potylitsyn, N. Terunuma, and J. Urakawa, “Experimental observation and investigation of the prewave zone effect in optical diffraction radiation,” Phys. Rev. STAB 11, 032804 (2008).

L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Popov, and A. P. Potylitsyn, “Backward transition radiation in the extreme ultraviolet region as a tool for the transverse beam profile diagnostics,” Phys. Rev. STAB 17, 112805 (2014).

M. Castellano and V. Verzilov, “Spatial resolution in optical transition radiation beam diagnostics,” Phys. Rev. STAB 1, 062801 (1998).

Other (4)

G. Kube, “Imaging with optical transition radiation, transverse beam diagnostics for the XFEL,” Report No. TESLA-FEL, (2008).

M. L. Ter-Mikaelyan, High Energy Electromagnetic Processes Condensed Media (Wiley).

https://www.sony-semicon.co.jp/products_en/IS/sensor0/industry/products/industry.html.

M. Born and E. Wolf, Principles of Optics (Pergamon Press Ltd).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Optical scheme of OTR beam size monitor.
Fig. 2
Fig. 2 (a) Radial distributions of OTR images calculated in near-field approximation (R = 1; γ=1000; λ=0.5 um; a = 500 mm; M = 1; dL = 200 mm (blue curve) and dL = 100 mm (red curve)). (b) PSF distributions calculated for y d =0 for the same conditions as function of the dimensionless coordinate x d .
Fig. 3
Fig. 3 PSF distributions for horizontal polarization component calculated using the far-field approximation ( y d =0; R; γ=2000; λ=0.5um; a = 500 mm; M = 1; d L =100mm (green curve), d L =50mm (blue curve)).
Fig. 4
Fig. 4 (a) Horizontal PSF distribution (points) and fit for q 1 =2,0 um (see Eq. (9), solid curve) calculated for the same conditions as before ( d L =100mm). (b) Beam images calculated with the PSF from Fig. 4(a) for different rms beam sizes (green line – σ=0.5 um; blue line – σ=1 um; yellow line – σ=2 um; red line – σ=4 um.
Fig. 5
Fig. 5 Calculated horizontal PSF distributions for the same parameter set as before, taking into account the influence of the shielding mask ( d L =50mm, yellow line – no mask; green line – d mask / d L =0.28; blue line – d mask / d L =0.4).
Fig. 6
Fig. 6 Scheme of the lens screening by an asymmetric mask. The red contour plot illustrates schematically the lobe structure of the horizontally polarized OTR intensity.
Fig. 7
Fig. 7 PSF distributions calculated for the lens screening schematically shown in Fig. 6.
Fig. 8
Fig. 8 Gaussian fit using the PSF for the case shown in Fig. 6(f) (c.f. also Fig. 7(f)).
Fig. 9
Fig. 9 Comparison of PSF distributions for masking with different asymmetric masks (blue – 50% screening, red – 75% screening).
Fig. 10
Fig. 10 Scheme of the asymmetric lens displacement.
Fig. 11
Fig. 11 Scheme of the asymmetric light collection.
Fig. 12
Fig. 12 Calculated PSF distributions for an asymmetric lens aperture (red points θ 0x =60/γ; θ 0y =0; θ m =50/γ – red points); θ 0x =110/γ, θ m =100/γ(green points) and Gaussian fits for them.
Fig. 13
Fig. 13 Airy functions for y d =0; λ=0.5um; θ m =100/γ=0.1rad (blue curve) and the PSF calculated for θ 0x =110/γ, θ m =100/γ=0.1rad, red dots (see Fig. 12).
Fig. 14
Fig. 14 Comparison of calculated OTR PSF functions for conventional light collection (red line), for 50% screening of the lens aperture (blue line) and for off-axis light collection (green line).

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

dW dωdΩ = α π 2 θ x 2 + θ y 2 ( γ 2 + θ x 2 + θ y 2 ) 2 ,
E x,y L ( Χ L , Y L )=const S T d Χ T d Y T { cos φ T sin φ T } K 1 ( k βγ R T )× exp[ i k 2a ( Χ T 2 + Y T 2 ) ]exp[ i k a ( Χ L Χ T + Y T Y L ) ].
E x,y D ( Χ D , Y D )=const S L d Χ L d Y L E X,Y L ( X L , Y L )×exp[ i k b ( Χ L X D + Y L Y D ) ].
{ x T y T }= 2π γλ { X T Y T },{ x L y L }= γ a { X L Y L },{ x D y D }= 2π γλ { X D Y D }.
{ E x D ( x D , y D ) E y D ( x D , y D ) }=const d x T d y T S T d x L d y L S L { x T y T } K 1 ( x T 2 + y T 2 ) x T 2 + y T 2 × exp[ i( x T x L + x T y L ) ]exp[ i M ( x L x D + y L y D ) ]exp[ i x T 2 + y T 2 4πR ].
1/a +1/b =1/f .
E D ( r D )= 0 r Tmax r T d r T K 1 ( r T )G( r T , r D , r m )exp[ i r T 2 4πR ] , G( r T , r D , r L max )= 0 r L max r L d r L J 1 ( r T r L ) J 1 ( r L r D )= r L max r D 2 r T 2 [ r T J 0 ( r L max r T ) J 1 ( r L max r D ) r D J 0 ( r L max r D ) J 1 ( r L max r T ) ].
d 2 W dωdΩ =const( | E x D | 2 + | E y D | 2 )=const( d 2 W x D dωdΩ + d 2 W y D dωdΩ )=const | E D ( r d ) | 2 .
f 1 ( Χ D )= q 0 Χ D 2 exp[ - Χ D 2 / q 1 2 ],
F conv ( X D ,σ)= q 0 q 1 2 σ 1 2/ q 1 2 +1/ σ 2 2 σ 4 + q 1 2 ( σ 2 + X D 2 ) ( q 1 2 +2 σ 2 ) 2 exp[ X D 2 ( q 1 2 +2 σ 2 ) ].
γ=2000; λ=500nm;a=b=500mm; f=250mm; d L =100mm ( θ m =0.1).
θ mask =0.2779 θ m lens
E x D ( x D , y D )= x Lmin r L max d x L y Lmin y Lmax d y L x L x L 2 + y L 2 exp{ ( x L x D + y L y D ) } ( 1+ x L 2 + y L 2 ) ,
y Lmin = ( r L max ) 2 x L 2 , y Lmax = ( r L max ) 2 x 2 L .
( x L x 0L ) 2 + ( y L y 0L ) 2 r lens m ,
x 0L =γΔ θ 0x ; y 0L =γΔ θ 0y ; r lens m =γ/a R lens .
AF( R D )= ( I 1 (α R D )/α R D ) 2 ,
α=2π θ m /λ,α=2π θ m /λ, R D = X D 2 + Y D 2 .
R 1 =0.61λ/ θ m .
FWHM( θ m =0.1rad;λ=0.5um)=2.57um.
FWHM( θ m =0.1)=2.361.0=2.36um=0.47λ/ θ m .
Δ N ph = α π 2 Δλ λ ΔΩ θ x 2 + θ y 2 ( γ 2 + θ x 2 + θ y 2 ) d θ x d θ y .
Δ N ph 1.4 10 4 ph/ e ( θ m =100/γ).

Metrics