Abstract

We describe second-order nonlinear optical mixing in non-birefringent, zincblende-structure materials that can be quasi-phasematched. Lack of birefringence and quasi-phasematching together allow efficient nonlinear mixing between diverse polarization states. We derive six coupled-wave equations that describe nonlinear optical mixing between the two orthogonal polarizations of the three frequencies in the second-order nonlinear interaction. The interactions of the additional polarization states can lead to apparent reduction in conversion efficiencies in optical parametric oscillators and amplifiers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Adiabatic optical parametric oscillators: steady-state and dynamical behavior

C. R. Phillips and M. M. Fejer
Opt. Express 20(3) 2466-2482 (2012)

Apodization of chirped quasi-phasematching devices

C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer
J. Opt. Soc. Am. B 30(6) 1551-1568 (2013)

Advances in nonlinear optical crystals for mid-infrared coherent sources

Peter G. Schunemann, Kevin T. Zawilski, Leonard A. Pomeranz, Daniel J. Creeden, and Peter A. Budni
J. Opt. Soc. Am. B 33(11) D36-D43 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [Crossref]
  2. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
    [Crossref]
  3. S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183 – 192 (2001).
    [Crossref]
  4. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
    [Crossref]
  5. A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
    [Crossref]
  6. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
    [Crossref]
  7. L. Becouarn, B. Gerard, M. Brevignon, J. Lehoux, Y. Gourdel, and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy,” Electron. Lett. 34, 2409–2410 (1998).
    [Crossref]
  8. T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).
    [Crossref]
  9. L. P. Gonzalez, D. C. Upchurch, P. G. Schunemann, L. Mohnkern, and S. Guha, “Second-harmonic generation of a tunable continuous-wave CO2 laser in orientation-patterned GaAs,” Opt. Lett. 38, 320–322 (2013).
    [Crossref] [PubMed]
  10. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
    [Crossref] [PubMed]
  11. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32, 2735–2737 (2007).
    [Crossref] [PubMed]
  12. C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “High-efficiency 20–50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 µm holmium laser,” Opt. Lett. 34, 262–264 (2009).
    [Crossref] [PubMed]
  13. K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Continuous-wave, multimilliwatt, mid-infrared source tunable across 6.4–7.5 µm based on orientation-patterned GaAs,” Opt. Lett. 39, 6751–6754 (2014).
    [Crossref] [PubMed]
  14. K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, “Grating tunable 4 - 14 µm GaAs optical parametric oscillator pumped at 3 µm,” Opt. Express 22, 4131–4136 (2014).
    [Crossref] [PubMed]
  15. P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).
    [Crossref]
  16. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
    [Crossref]
  17. O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-µm radiation in orientation-patterned GaAs,” Opt. Lett. 27, 2091–2093 (2002).
    [Crossref]
  18. S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. J. Boyland, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency CW mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs,” Opt. Lett. 33, 1413–1415 (2008).
    [Crossref] [PubMed]
  19. S. Guha, J. O. Barnes, and P. G. Schunemann, “Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned gallium phosphide,” Opt. Mater. Express 5, 2911–2923 (2015).
    [Crossref]
  20. G. Insero, C. Clivati, D. D’Ambrosio, P. D. Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41, 5114–5117 (2016).
    [Crossref] [PubMed]
  21. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
    [Crossref] [PubMed]
  22. P. S. Kuo, “Thick film, orientation-patterned gallium arsenide for nonlinear optical frequency conversion,” Ph.D. thesis, Stanford University (2008).
  23. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984).
  24. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  25. N. Bloembergen, Nonlinear Optics(W. A. Benjamin, New York, 1965).
  26. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003), 2nd ed.
  27. S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
    [Crossref]
  28. S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Progress in Optics 47, 1–73 (2005),
    [Crossref]
  29. G. Assanto, S. Trillo, and I. Torelli, “All-optical processing by means of vectorial interactions in second-order cascading: novel approaches,” Opt. Lett. 19, 1720–1722 (1994).
    [Crossref] [PubMed]
  30. S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase-matched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999).
    [Crossref]
  31. M. A. Krumbügel, J. N. Sweetser, D. N. Fittinghoff, K. W. DeLong, and R. Trebino, “Ultrafast optical switching by use of fully phase-matched cascaded second-order nonlinearities in a polarization-gate geometry,” Opt. Lett. 22, 245–247 (1997).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

2014 (2)

2013 (2)

L. P. Gonzalez, D. C. Upchurch, P. G. Schunemann, L. Mohnkern, and S. Guha, “Second-harmonic generation of a tunable continuous-wave CO2 laser in orientation-patterned GaAs,” Opt. Lett. 38, 320–322 (2013).
[Crossref] [PubMed]

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Progress in Optics 47, 1–73 (2005),
[Crossref]

2004 (1)

2002 (2)

2001 (2)

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183 – 192 (2001).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[Crossref]

1999 (2)

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase-matched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999).
[Crossref]

1998 (1)

L. Becouarn, B. Gerard, M. Brevignon, J. Lehoux, Y. Gourdel, and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy,” Electron. Lett. 34, 2409–2410 (1998).
[Crossref]

1997 (1)

1996 (1)

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[Crossref]

1994 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

1969 (1)

S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Antoniades, N.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[Crossref]

Arisholm, G.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Assanto, G.

Barnes, J. O.

Becouarn, L.

Bhat, R.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[Crossref]

Bisson, S. E.

Bliss, D.

Bliss, D. F.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

N. Bloembergen, Nonlinear Optics(W. A. Benjamin, New York, 1965).

Borri, S.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003), 2nd ed.

Boyland, A. J.

Brevignon, M.

L. Becouarn, B. Gerard, M. Brevignon, J. Lehoux, Y. Gourdel, and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy,” Electron. Lett. 34, 2409–2410 (1998).
[Crossref]

Budni, P. A.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Caneau, C.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[Crossref]

Clarkson, W. A.

Clivati, C.

Creeden, D. J.

D’Ambrosio, D.

DeLong, K. W.

Devi, K.

Deyanova, Y.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Ebert, C. B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[Crossref]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

Ebrahim-Zadeh, M.

Eichhorn, M.

Eyres, L. A.

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-µm radiation in orientation-patterned GaAs,” Opt. Lett. 27, 2091–2093 (2002).
[Crossref]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[Crossref]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

Faye, D.

Fejer, M.

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

Fejer, M. M.

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32, 2735–2737 (2007).
[Crossref] [PubMed]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref] [PubMed]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-µm radiation in orientation-patterned GaAs,” Opt. Lett. 27, 2091–2093 (2002).
[Crossref]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[Crossref]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Fittinghoff, D. N.

Gerard, B.

Gonzalez, L. P.

Gourdel, Y.

L. Becouarn, B. Gerard, M. Brevignon, J. Lehoux, Y. Gourdel, and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy,” Electron. Lett. 34, 2409–2410 (1998).
[Crossref]

Grisard, A.

Guha, S.

Harris, J. S.

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32, 2735–2737 (2007).
[Crossref] [PubMed]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref] [PubMed]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-µm radiation in orientation-patterned GaAs,” Opt. Lett. 27, 2091–2093 (2002).
[Crossref]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[Crossref]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

Harris, S. E.

S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
[Crossref]

Hirth, A.

Ibsen, M.

Insero, G.

Ito, R.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183 – 192 (2001).
[Crossref]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Kieleck, C.

Kivshar, Y. S.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Progress in Optics 47, 1–73 (2005),
[Crossref]

Koh, S.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183 – 192 (2001).
[Crossref]

Kondo, T.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183 – 192 (2001).
[Crossref]

Koza, M. A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[Crossref]

Krumbügel, M. A.

Kulp, T. J.

Kuo, P. S.

Lallier, E.

C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “High-efficiency 20–50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 µm holmium laser,” Opt. Lett. 34, 262–264 (2009).
[Crossref] [PubMed]

S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. J. Boyland, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency CW mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs,” Opt. Lett. 33, 1413–1415 (2008).
[Crossref] [PubMed]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref] [PubMed]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-µm radiation in orientation-patterned GaAs,” Opt. Lett. 27, 2091–2093 (2002).
[Crossref]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).
[Crossref]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[Crossref]

L. Becouarn, B. Gerard, M. Brevignon, J. Lehoux, Y. Gourdel, and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy,” Electron. Lett. 34, 2409–2410 (1998).
[Crossref]

Lehoux, J.

L. Becouarn, B. Gerard, M. Brevignon, J. Lehoux, Y. Gourdel, and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy,” Electron. Lett. 34, 2409–2410 (1998).
[Crossref]

Levi, O.

Lin, A. C.

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

Magarrell, D. J.

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Makasyuk, I.

Mohnkern, L.

Natale, P. D.

Nevsky, A.

Parameswaran, K. R.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Pinguet, T. J.

Pomeranz, L. A.

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
[Crossref]

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).
[Crossref]

Rajhel, A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[Crossref]

Sahu, J. K.

Saltiel, S.

Saltiel, S. M.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Progress in Optics 47, 1–73 (2005),
[Crossref]

Santambrogio, G.

Schiller, S.

Schober, A.

Schunemann, P. G.

G. Insero, C. Clivati, D. D’Ambrosio, P. D. Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41, 5114–5117 (2016).
[Crossref] [PubMed]

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
[Crossref]

S. Guha, J. O. Barnes, and P. G. Schunemann, “Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned gallium phosphide,” Opt. Mater. Express 5, 2911–2923 (2015).
[Crossref]

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).
[Crossref]

K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, “Grating tunable 4 - 14 µm GaAs optical parametric oscillator pumped at 3 µm,” Opt. Express 22, 4131–4136 (2014).
[Crossref] [PubMed]

K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Continuous-wave, multimilliwatt, mid-infrared source tunable across 6.4–7.5 µm based on orientation-patterned GaAs,” Opt. Lett. 39, 6751–6754 (2014).
[Crossref] [PubMed]

L. P. Gonzalez, D. C. Upchurch, P. G. Schunemann, L. Mohnkern, and S. Guha, “Second-harmonic generation of a tunable continuous-wave CO2 laser in orientation-patterned GaAs,” Opt. Lett. 38, 320–322 (2013).
[Crossref] [PubMed]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984).

Shiraki, Y.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183 – 192 (2001).
[Crossref]

Simanovskii, D. M.

Skauli, T.

Sukhorukov, A. A.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Progress in Optics 47, 1–73 (2005),
[Crossref]

Sweetser, J. N.

Torelli, I.

Tourreau, P. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[Crossref]

Trebino, R.

Trillo, S.

Upchurch, D. C.

Vasilyev, S.

Vodopyanov, K. L.

Weyburne, D.

Yoo, S. J. B.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[Crossref]

Yu, X.

Zawilski, K. T.

Zhang, Z.

Zondy, J.-J.

Appl. Phys. Lett. (2)

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[Crossref]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[Crossref]

Electron. Lett. (1)

L. Becouarn, B. Gerard, M. Brevignon, J. Lehoux, Y. Gourdel, and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy,” Electron. Lett. 34, 2409–2410 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

J. Cryst. Growth (3)

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228, 183 – 192 (2001).
[Crossref]

A. C. Lin, M. Fejer, and J. S. Harris, “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363, 258–263 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (13)

G. Assanto, S. Trillo, and I. Torelli, “All-optical processing by means of vectorial interactions in second-order cascading: novel approaches,” Opt. Lett. 19, 1720–1722 (1994).
[Crossref] [PubMed]

S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase-matched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999).
[Crossref]

M. A. Krumbügel, J. N. Sweetser, D. N. Fittinghoff, K. W. DeLong, and R. Trebino, “Ultrafast optical switching by use of fully phase-matched cascaded second-order nonlinearities in a polarization-gate geometry,” Opt. Lett. 22, 245–247 (1997).
[Crossref] [PubMed]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).
[Crossref]

L. P. Gonzalez, D. C. Upchurch, P. G. Schunemann, L. Mohnkern, and S. Guha, “Second-harmonic generation of a tunable continuous-wave CO2 laser in orientation-patterned GaAs,” Opt. Lett. 38, 320–322 (2013).
[Crossref] [PubMed]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[Crossref] [PubMed]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32, 2735–2737 (2007).
[Crossref] [PubMed]

C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, and E. Lallier, “High-efficiency 20–50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 µm holmium laser,” Opt. Lett. 34, 262–264 (2009).
[Crossref] [PubMed]

K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh, “Continuous-wave, multimilliwatt, mid-infrared source tunable across 6.4–7.5 µm based on orientation-patterned GaAs,” Opt. Lett. 39, 6751–6754 (2014).
[Crossref] [PubMed]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-µm radiation in orientation-patterned GaAs,” Opt. Lett. 27, 2091–2093 (2002).
[Crossref]

S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. J. Boyland, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency CW mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs,” Opt. Lett. 33, 1413–1415 (2008).
[Crossref] [PubMed]

G. Insero, C. Clivati, D. D’Ambrosio, P. D. Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41, 5114–5117 (2016).
[Crossref] [PubMed]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Proc. IEEE (1)

S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
[Crossref]

Proc. SPIE (1)

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).
[Crossref]

Progress in Optics (1)

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Progress in Optics 47, 1–73 (2005),
[Crossref]

Other (4)

N. Bloembergen, Nonlinear Optics(W. A. Benjamin, New York, 1965).

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003), 2nd ed.

P. S. Kuo, “Thick film, orientation-patterned gallium arsenide for nonlinear optical frequency conversion,” Ph.D. thesis, Stanford University (2008).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Numerical modeling of a zincblende OPO including polarization rotation for the case of N = 2, 0.3% output coupling and pump polarization θ3(0) = 45° to [110]. The top row (a)–(c) shows the relative intensities, the second row (d)-(f) shows the polarization angles, and the last row (g) shows the evolution of the function f as a function of crystal location.
Fig. 2
Fig. 2 Signal photon conversion efficiency, η 2 , as a function of pump angle for fixed times above threshold (N = 2). As comparison, the solid line plots the prediction with the polarization angles fixed to maximize the gain at threshold.
Fig. 3
Fig. 3 Comparison of polarization angles at the output of the OPO if the polarization rotation effects are neglected (θi,opt, solid line) or included (θi,sim, open circles) for N = 2.
Fig. 4
Fig. 4 Deviation of polarization angles (θi,simθi,opt) for different initial pump angle in a zincblende OPO with times above threshold, N = 2.
Fig. 5
Fig. 5 Dependence on times above threshold, N, of (a) photon conversion efficiency and (b) deviation in pump polarization angle for several incident pump polarization angles. (1 − R) is set to 0.003. The signal and idler output polarization angles for (c) 45° and (d) 10° incident pump polarization angles.
Fig. 6
Fig. 6 Dependence on N of (a) photon conversion efficiency and (b) deviation in pump polarization angle for θ3(0) = 10° and several different outcoupling rates.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E i ( z , t ) = Re [ E i ( z ) e i ( k i z ω i t ) ] ,
P 1 ( 2 ) ( z , t ) = Re [ ϵ 0 E 2   * E 3 ( d _ _ : e ^ 2 e ^ 3 ) e i [ ( k 2 + k 3 ) z ω 1 t ] ] P 2 ( 2 ) ( z , t ) = Re [ ϵ 0 E 1   * E 3 ( d _ _ : e ^ 3 e ^ 1 ) e i [ ( k 1 + k 3 ) z ω 2 t ] ] P 3 ( 2 ) ( z , t ) = Re [ ϵ 0 E 1 E 2 ( d _ _ : e ^ 1 e ^ 2 ) e i [ ( k 1 + k 2 ) z ω 3 t ] ] .
d E 1 ( z ) d z = i γ 1 P 1 , trans ( 2 ) ( z ) e i Δ k z d E 2 ( z ) d z = i γ 2 P 2 , trans ( 2 ) ( z ) e i Δ k z d E 3 ( z ) d z = i γ 3 P 3 , trans ( 2 ) ( z ) e i Δ k z ,
E i = E i θ ^ i , θ ^ i = cos θ i a ^ + sin θ i b ^ ,
d E i d z = d d z ( E i θ ^ i ) = d E i d z θ ^ i + E i d θ i d z θ ^ i , ,
d E 1 d z = i κ 1 E 2   * E 3 θ ^ 1 ( d _ _ : θ ^ 2 θ ^ 3 ) = i κ 1 E 2   * E 3 f 1 ( θ 1 ; θ 2 , θ 3 ) d E 2 d z = i κ 2 E 3 E 1   * θ ^ 2 ( d _ _ : θ ^ 3 θ ^ 1 ) = i κ 2 E 3 E 1   * f 2 ( θ 2 ; θ 3 , θ 1 ) d E 3 d z = i κ 3 E 1 E 2 θ ^ 3 ( d _ _ : θ ^ 1 θ ^ 2 ) = i κ 3 E 1 E 2 f 3 ( θ 3 ; θ 1 , θ 2 ) E 1 d θ 1 d z = i κ 1 E 2   * E 3 θ ^ 1 , ( d _ _ : θ ^ 2 θ ^ 3 ) = i κ 1 E 2   * E 3 f 1 , ( θ 1 ; θ 2 , θ 3 ) E 2 d θ 2 d z = i κ 2 E 3 E 1   * θ ^ 2 , ( d _ _ : θ ^ 3 θ ^ 1 ) = i κ 2 E 3 E 1   * f 2 , ( θ 2 ; θ 3 , θ 1 ) E 3 d θ 3 d z = i κ 3 E 1 E 2 θ ^ 3 , ( d _ _ : θ ^ 1 θ ^ 2 ) = i κ 3 E 1 E 2 f 3 , ( θ 3 ; θ 1 , θ 2 )
f i ( θ i ; θ j , θ k ) = θ ^ i ( d _ _ : θ ^ j θ ^ k ) f i , ( θ i ; θ j , θ k ) = θ ^ i , ( d _ _ : θ ^ j θ ^ k ) .
d I ( ω i ) d z = ϵ 0 c n i 2 ( E i * d E i d z + E i d E i * d z ) .
f 1 ( θ 1 ; θ 2 , θ 3 ) = f 2 ( θ 2 ; θ 3 , θ 1 ) = f 3 * ( θ 3 ; θ 1 , θ 2 )
1 ω 1 d I ( ω 1 ) d z = 1 ω 2 d I ( ω 2 ) d z = 1 ω 3 d I ( ω 3 ) d z
f i , ( θ i ; θ j , θ k ) = f θ i .
f = sin θ 1 cos θ 2 cos θ 3 + cos θ 1 sin θ 2 cos θ 3 + cos θ 1 cos θ 2 sin θ 3 f 1 , = cos θ 1 cos θ 2 cos θ 3 sin θ 1 sin θ 2 cos θ 3 sin θ 1 cos θ 2 sin θ 3 f 2 , = sin θ 1 sin θ 2 cos θ 3 + cos θ 1 cos θ 2 cos θ 3 cos θ 1 sin θ 2 sin θ 3 f 3 , = sin θ 1 cos θ 2 sin θ 3 cos θ 1 sin θ 2 sin θ 3 + cos θ 1 cos θ 2 cos θ 3 .
tan θ 1 = cos θ 2 cos θ 3 sin ( θ 2 + θ 3 ) f = sin 2 ( θ 2 + θ 3 ) + cos 2 θ 2 cos 2 θ 3 = cos 2 θ 2 + sin 2 θ 2 cos 2 θ 3 + 2 cos θ 2 cos θ 3 sin θ 2 sin θ 3 .
d 2 E 1 d z 2 = i κ 1 E 3 , 0 ( d E 2 * d z f + E 2 * ( f θ 1 d θ 1 d z + f θ 2 d θ 2 d z + f θ 3 d θ 3 d z ) ) = i κ 1 E 3 , 0 ( d E 2 * d z f + E 2 * ( f 1 , d θ 1 d z + f 2 , d θ 2 d z + f 3 , d θ 3 d z ) ) = E 1 ( κ 1 κ 2 | E 3 , 0 | 2 | f | 2 κ 1 2 ( E 2 * ) 2 E 3 , 0 2 E 1 2 f 1 , 2 κ 1 κ 2 E 3 , 0 2 E 1 * E 2 * E 1 E 2 f 2 , 2 κ 1 κ 3 | E 2 | 2 f 3 , 2 ) .
d 2 E 1 d z = E 1 ( κ 1 κ 2 | E 3 , 0 | 2 | f | 2 κ 1 κ 3 | E 2 | 2 f 3 , 2 ) .
d 2 E 2 d z 2 = E 2 ( κ 1 κ 2 | E 3 , 0 | 2 | f | 2 κ 2 κ 3 | E 1 | 2 f 3 , 2 ) .
N = ( E 3 ( 0 ) E 3 , t h ( 0 ) ) 2 = κ 1 κ 2 f 2 E 3 ( 0 ) 2 L 2 a s = 1 sinc 2 β L ,
β = κ 1 κ 3 E 2 f .
PD = I 3 ( 0 ) I 3 ( L ) I 3 ( 0 ) = sin 2 β L ,
tan θ 1 = cot θ 2 .
| f | = 1 , f 2 , = 0 , f 3 , = 1 2 sin 2 θ 2 .
a ^ = i a i i ^ b ^ = i b i i ^ a ^ a ^ * = b ^ b ^ * = 1 a ^ b ^ * = 0 .
( E 3 * P 3 + E 3 P 3 * ) = ( E 2 * P 2 + E 2 P 2 * ) = ( E 1 * P 1 + E 1 P 1 * ) .
E 3 * ( d _ _ : E ^ 1 E ^ 2 ) = E 2 ( d _ _ : E ^ 3 E ^ 1 * ) * = E 1 ( d _ _ : E ^ 2 * E ^ 3 ) * .
i [ ( E 3 , a * a i * + E 3 , b * b i * ) j , k d i j k ( ω 3 ; ω 1 , ω 2 ) ( E 1 , a a j + E 1 , b b j ) ( E 2 , a a k + E 1 , b b k ) ] = k { ( E 2 , a a k + E 1 , b b k ) [ i , j d k i j ( ω 2 ; ω 3 , ω 1 ) ( E 3 , a a i + E 3 , b b i ) ( E 1 , a * a j * + E 1 , b * b j * ) ] * } .

Metrics