Abstract

We report on the successful fabrication of multi-branched CuS nanodendrites with average branch length of about 20 nm by laser ablation of bulk Cu target in thioacetamide (TAA) solution. During the nucleation of Cu and S species, the accurate anisotropic growth should be attributed to an ultra-rapid acid etching process by laser-induced TAA hydrolyzing reaction. Interestingly, the semiconductor CuS nanodendrites provide pronounced surface enhanced Raman scattering (SERS) properties with noble-metal comparable activity and a detection limit as low as ~10−10 M, approaching the requirement (~nM) for single molecule detection. More importantly, after SERS analysis, the crystal violet (CV) probe molecules can be effectively removed from the substrate by 1064nm laser irradiation-induced moderate thermal treatment. Therefore, the unique and distinctive advantage is that the as-prepared CuS nanodendrites exhibit excellent reusability for 60 cycles of repeated SERS analyses. The low-cost CuS semiconductor nanodendrites with enhanced SERS properties should be established as a prominent SERS-based ultrasensitive probe in the repeated applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy

Hua Zhang, Linlin Xu, Yue Tian, Ming Chen, Xiangdong Liu, and Feng Chen
Opt. Express 25(23) 29389-29400 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  2. J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “ Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29, 1604797(1) - 1604797(7) (2017).
  3. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
    [Crossref] [PubMed]
  4. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [Crossref] [PubMed]
  5. J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
    [Crossref] [PubMed]
  6. M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).
  7. L. Xu, S. Li, H. Zhang, D. Wang, and M. Chen, “Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy,” Opt. Express 25(7), 7408–7417 (2017).
    [Crossref] [PubMed]
  8. Y. Jiao, M. Chen, Y. Y. Ren, and H. Ma, “Synthesis of three-dimensional honeycomb-like Au nanoporous films by laser induced modification and its application for surface enhanced Raman spectroscopy,” Opt. Mater. Express 7(5), 1557–1564 (2017).
    [Crossref]
  9. Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2014).
    [Crossref]
  10. L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
    [Crossref]
  11. Q. Liu, L. Jiang, and L. Guo, “Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate,” Small 10(1), 48–51 (2014).
    [Crossref] [PubMed]
  12. I. Alessandri, E. Biavardi, A. Gianoncelli, P. Bergese, and E. Dalcanale, “Cavitands endow all-dielectric beads with selectivity for plasmon-free enhanced Raman detection of Nε-methylated lysine,” ACS Appl. Mater. Interfaces 8(24), 14944–14951 (2016).
    [Crossref] [PubMed]
  13. I. Alessandri, “Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators,” J. Am. Chem. Soc. 135(15), 5541–5544 (2013).
    [Crossref] [PubMed]
  14. S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
    [Crossref] [PubMed]
  15. H. Zhang, M. Chen, D. M. Wang, L. L. Xu, and X. D. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
    [Crossref]
  16. D. M. Wang, H. Zhang, L. J. Li, M. Chen, and X. D. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
    [Crossref]
  17. T. J. Wang, D. M. Wang, H. Zhang, X. L. Wang, and M. Chen, “Laser-induced convenient synthesis of porous Cu2O@CuO nanocomposites with excellent adsorption of methyl blue solution,” Opt. Mater. Express 7(3), 924–931 (2017).
    [Crossref]
  18. M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
    [Crossref] [PubMed]
  19. L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
    [Crossref]
  20. M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
    [Crossref] [PubMed]
  21. S. W. Hsu, C. Ngo, W. Bryks, and A. R. Tao, “Shape focusing during the anisotropic growth of CuS triangular nanoprisms,” Chem. Mater. 27(14), 4957–4963 (2015).
    [Crossref]
  22. L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
    [Crossref]
  23. Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
    [Crossref] [PubMed]
  24. H. Nishi, K. Asami, and T. Tatsuma, “CuS nanoplates for LSPR sensing in the second biological optical window,” Opt. Mater. Express 6(4), 1043–1048 (2016).
    [Crossref]

2017 (3)

2016 (7)

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

I. Alessandri, E. Biavardi, A. Gianoncelli, P. Bergese, and E. Dalcanale, “Cavitands endow all-dielectric beads with selectivity for plasmon-free enhanced Raman detection of Nε-methylated lysine,” ACS Appl. Mater. Interfaces 8(24), 14944–14951 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

H. Zhang, M. Chen, D. M. Wang, L. L. Xu, and X. D. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
[Crossref]

D. M. Wang, H. Zhang, L. J. Li, M. Chen, and X. D. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
[Crossref]

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

H. Nishi, K. Asami, and T. Tatsuma, “CuS nanoplates for LSPR sensing in the second biological optical window,” Opt. Mater. Express 6(4), 1043–1048 (2016).
[Crossref]

2015 (2)

S. W. Hsu, C. Ngo, W. Bryks, and A. R. Tao, “Shape focusing during the anisotropic growth of CuS triangular nanoprisms,” Chem. Mater. 27(14), 4957–4963 (2015).
[Crossref]

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

2014 (4)

Q. Liu, L. Jiang, and L. Guo, “Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate,” Small 10(1), 48–51 (2014).
[Crossref] [PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2014).
[Crossref]

S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
[Crossref] [PubMed]

2013 (3)

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
[Crossref] [PubMed]

I. Alessandri, “Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators,” J. Am. Chem. Soc. 135(15), 5541–5544 (2013).
[Crossref] [PubMed]

2010 (2)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

2009 (1)

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

2008 (1)

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Alessandri, I.

I. Alessandri, E. Biavardi, A. Gianoncelli, P. Bergese, and E. Dalcanale, “Cavitands endow all-dielectric beads with selectivity for plasmon-free enhanced Raman detection of Nε-methylated lysine,” ACS Appl. Mater. Interfaces 8(24), 14944–14951 (2016).
[Crossref] [PubMed]

I. Alessandri, “Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators,” J. Am. Chem. Soc. 135(15), 5541–5544 (2013).
[Crossref] [PubMed]

Alrasheed, S.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Asami, K.

Bai, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Bai, Z. L.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Bergese, P.

I. Alessandri, E. Biavardi, A. Gianoncelli, P. Bergese, and E. Dalcanale, “Cavitands endow all-dielectric beads with selectivity for plasmon-free enhanced Raman detection of Nε-methylated lysine,” ACS Appl. Mater. Interfaces 8(24), 14944–14951 (2016).
[Crossref] [PubMed]

Biavardi, E.

I. Alessandri, E. Biavardi, A. Gianoncelli, P. Bergese, and E. Dalcanale, “Cavitands endow all-dielectric beads with selectivity for plasmon-free enhanced Raman detection of Nε-methylated lysine,” ACS Appl. Mater. Interfaces 8(24), 14944–14951 (2016).
[Crossref] [PubMed]

Bryks, W.

S. W. Hsu, C. Ngo, W. Bryks, and A. R. Tao, “Shape focusing during the anisotropic growth of CuS triangular nanoprisms,” Chem. Mater. 27(14), 4957–4963 (2015).
[Crossref]

Candeloro, P.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Chen, L. Y.

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

Chen, M.

Chen, M. W.

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

Chen, X.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Cheng, L.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Coluccio, M. L.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Cuda, G.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Dalcanale, E.

I. Alessandri, E. Biavardi, A. Gianoncelli, P. Bergese, and E. Dalcanale, “Cavitands endow all-dielectric beads with selectivity for plasmon-free enhanced Raman detection of Nε-methylated lysine,” ACS Appl. Mater. Interfaces 8(24), 14944–14951 (2016).
[Crossref] [PubMed]

Das, G.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Deng, L. G.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Fabrizio, E. D.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Fan, Q.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Fang, J.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Fang, Z.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Feng, Y.

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2014).
[Crossref]

Fratalocchi, A.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Fu, W. P.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Fujita, T.

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

Gao, C.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Gentile, F.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Gianoncelli, A.

I. Alessandri, E. Biavardi, A. Gianoncelli, P. Bergese, and E. Dalcanale, “Cavitands endow all-dielectric beads with selectivity for plasmon-free enhanced Raman detection of Nε-methylated lysine,” ACS Appl. Mater. Interfaces 8(24), 14944–14951 (2016).
[Crossref] [PubMed]

Gongora, J. S. T.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Guo, L.

Q. Liu, L. Jiang, and L. Guo, “Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate,” Small 10(1), 48–51 (2014).
[Crossref] [PubMed]

He, R.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Hsu, S. W.

S. W. Hsu, C. Ngo, W. Bryks, and A. R. Tao, “Shape focusing during the anisotropic growth of CuS triangular nanoprisms,” Chem. Mater. 27(14), 4957–4963 (2015).
[Crossref]

Huang, P.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Jacobson, O.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Jeon, K. S.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Jiang, L.

Q. Liu, L. Jiang, and L. Guo, “Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate,” Small 10(1), 48–51 (2014).
[Crossref] [PubMed]

Jiao, Y.

Kim, H. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Lee, J. Y.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Li, H.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, L. J.

Li, S.

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, Z. Y.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Lim, D. K.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Limongi, T.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Lin, J.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Lin, L.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Liu, G.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Liu, H.

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2014).
[Crossref]

Liu, K.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Liu, L. G.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Liu, Q.

Q. Liu, L. Jiang, and L. Guo, “Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate,” Small 10(1), 48–51 (2014).
[Crossref] [PubMed]

Liu, X.

Liu, X. D.

Liu, Y.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Lu, N.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Ma, C.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Ma, H.

Meng, M.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Moskovits, M.

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
[Crossref] [PubMed]

Nam, J. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Ngo, C.

S. W. Hsu, C. Ngo, W. Bryks, and A. R. Tao, “Shape focusing during the anisotropic growth of CuS triangular nanoprisms,” Chem. Mater. 27(14), 4957–4963 (2015).
[Crossref]

Nicastri, A.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Nishi, H.

Niu, G.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Perozziello, G.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Perri, A. M.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Ren, Y. Y.

Shi, L. J.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Su, H.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Suh, Y. D.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Tao, A. R.

S. W. Hsu, C. Ngo, W. Bryks, and A. R. Tao, “Shape focusing during the anisotropic growth of CuS triangular nanoprisms,” Chem. Mater. 27(14), 4957–4963 (2015).
[Crossref]

Tatsuma, T.

Tian, R.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wang, D.

Wang, D. I. C.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Wang, D. M.

Wang, T. J.

Wang, X. L.

Wang, Z.

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, X.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Xie, H. Y.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Xie, J.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Xu, L.

Xu, L. L.

Yang, G.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Yang, J.

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2014).
[Crossref]

Yang, Z.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yin, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

You, H.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Yu, J. S.

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

Zaccaria, R. P.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Zeng, J.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Zhang, C.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Zhang, H.

Zhang, L.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zhang, Q.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Zhang, R.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Zhang, T.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zheng, H.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zhong, H. Z.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zou, B. S.

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

I. Alessandri, E. Biavardi, A. Gianoncelli, P. Bergese, and E. Dalcanale, “Cavitands endow all-dielectric beads with selectivity for plasmon-free enhanced Raman detection of Nε-methylated lysine,” ACS Appl. Mater. Interfaces 8(24), 14944–14951 (2016).
[Crossref] [PubMed]

ACS Nano (2)

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, and X. Chen, “Biomineralization- inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics,” ACS Nano 10(3), 3453–3460 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

Chem. Mater. (2)

S. W. Hsu, C. Ngo, W. Bryks, and A. R. Tao, “Shape focusing during the anisotropic growth of CuS triangular nanoprisms,” Chem. Mater. 27(14), 4957–4963 (2015).
[Crossref]

L. G. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: phase-and composition dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

I. Alessandri, “Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators,” J. Am. Chem. Soc. 135(15), 5541–5544 (2013).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (2)

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2014).
[Crossref]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Nano Lett. (2)

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nature (1)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (5)

Phys. Chem. Chem. Phys. (1)

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
[Crossref] [PubMed]

Sci. Adv. (1)

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. P. Zaccaria, J. S. T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. D. Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1, 1500487 (2015).

Small (1)

Q. Liu, L. Jiang, and L. Guo, “Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate,” Small 10(1), 48–51 (2014).
[Crossref] [PubMed]

Other (1)

J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, and L. Guo, “ Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29, 1604797(1) - 1604797(7) (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The typical (a) low- and (b) enlarged TEM images of the product fabricated by 1064 nm laser beam with power density of ~1.3 GW/cm2. The inset shows the EDS pattern of the product.
Fig. 2
Fig. 2 The representative (a) low- magnification and (b) high-resolution TEM images of the product fabricated by 1064 nm laser beam with power density of ~0.9 GW/cm2.
Fig. 3
Fig. 3 The XRD patterns (a) and XPS spectra (b) of the multi-branched CuS nanodendrites and CuS nanoporous structures, respectively.
Fig. 4
Fig. 4 The SEM images of three different SERS substrates based on the CuS nanoporous structures (a), multi-branched CuS nanodendrites (b) and noble metallic Ag nanoparticles (c), respectively. (d) The SERS spectra of 10−6 M CV molecules on CuS nanoporous structures and CuS nanodendrites and Ag nanoparticles, respectively. (e) The SRES spectra of CV molecules with various concentrations (10−7~10−10 M) absorbed on the multi-branched CuS nanodendrites.
Fig. 5
Fig. 5 (a) The absorption spectrum of the multi-branched CuS nanodendrites. (b) The SERS spectra of residual CV molecules on CuS nanodendrites via 1064 nm laser irradiation for different times. Laser power density was about 2kW/cm2. (c) The corresponding variation SERS intensities at 1617.3 cm−1 as a function of irradiation time. The inset shows the TEM image of the CuS nanodendrites after laser irradiation for 20 min. Scale bar: 10 nm. (d) The recycling tests of SERS performances using the same CuS nanodendrites-based substrate.

Metrics