Abstract

To generate linearly chirped microwave signals with a large frequency tunable range, a photonic approach is proposed. Firstly, A dual-output dual-parallel Mach-Zehnder modulator (DPMZM) followed by the polarization beam combiner and an optical filter is utilized to generate orthogonally polarized ± second-order optical sidebands. Then a polarization modulator is employed to achieve the phase modulation of the two wavelengths. Finally, the balanced detection is applied to suppress the distortion and background noise. The key advantages of the proposed scheme are the central frequency multiplying operation and large frequency tunable range. Simulation results show that a linearly chirped pulse product with time-bandwidth as well as a compression ratio for the pulse of 11 and 9.3 respectively, and a peak-to-sidelobe ratio (PSR) of 7.4 dB is generated. The system has both good reconfigurability and tunability, its frequency can be continuously adjusted from about 10 GHz to as much as 50 GHz in principle.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic generation of binary and quaternary phase-coded microwave waveforms with an ultra-wide frequency tunable range

Yang Chen, Aijun Wen, Yan Chen, and Xiaohui Wu
Opt. Express 22(13) 15618-15625 (2014)

Tunable 360° microwave photonic multichannel phase shifter with frequency quadrupling

Weilei Wang, Aijun Wen, Zhaoyang Tu, Dong Liang, Mei Chen, Xiaoyan Li, and Jinbo Xiao
Appl. Opt. 57(17) 4751-4755 (2018)

Photonic generation of multi-frequency phase-coded microwave signal based on a dual-output Mach-Zehnder modulator and balanced detection

Dexin Wu, Xiaoxiao Xue, ShanGyuan Li, Xiaoping Zheng, Xuedi Xiao, Yu Zha, and Bingkun Zhou
Opt. Express 25(13) 14516-14523 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Skolnic, Introduction to Radar (McGraw-Hill Press, New York, USA, 1962)
  2. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  3. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
    [Crossref] [PubMed]
  4. R. Ashrafi, Y. Park, and J. Azaña, “Fiber-Based Photonic Generation of High-Frequency Microwave Pulses With Reconfigurable Linear Chirp Control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
    [Crossref]
  5. M. Li and J. Yao, “Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
    [Crossref]
  6. C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
    [Crossref]
  7. C. Wang and J. Yao, “Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
    [Crossref]
  8. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
    [Crossref]
  9. W. Zhang and J. Yao, “Photonic Generation of Linearly Chirped Microwave Waveform with a Large Time-Bandwidth Product Using a Silicon-Based On-Chip Spectral Shaper,” in Proc. Int. Topical Meeting Microw. Photon. (2014)
  10. O. L. Coutinho, J. Zhang, and J. Yao, “Photonic Generation of a Linearly Chirped Microwave Waveform With a Large Time-Bandwidth Product Based on Self-Heterodyne Technique,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
    [Crossref]
  11. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic Generation of Phase-Modulated RF Signals for Pulse Compression Techniques in Coherent Radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
    [Crossref]
  12. W. Li, F. Kong, and J. Yao, “Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
    [Crossref]
  13. Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
    [Crossref] [PubMed]
  14. Y. Zhang, X. Ye, and S. Pan, “Photonic Generation of Linear Frequency-Modulated Waveform with Improved Time-Bandwidth Product,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
    [Crossref]
  15. H. Chi and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal Using a Polarization Modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
    [Crossref]
  16. X. K. Liu, W. Pan, X. H. Zou, and S. L. Pan, “Photonic Generation of Chirped Microwave Pulses with Precisely Targeted and Tuned Parameters Using External Modulation,” in Proc. Optical Fiber Communications Conference and Exhibition (2015)
    [Crossref]
  17. Y. Zhang, F. Zhang, and S. Pan, “Frequency-Doubled and Phase-Coded RF Signal Generation Based on Orthogonally Polarized Carrier-suppressed Double Sideband Modulation,” Proc. Asia Communications and Photonics Conference, OSA Technical Digest(online), paper AF3A.2 (2014)
    [Crossref]
  18. S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett. 39(13), 3958–3961 (2014).
    [Crossref] [PubMed]
  19. Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization Maintaining Fiber Bragg Grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2016).
    [Crossref]
  20. Y. Zhang, F. Zhang, and S. Pan, “Optical Single Sideband Modulation With Tunable Optical Carrier-to-Sideband Ratio,” IEEE Photonics Technol. Lett. 26(7), 653–655 (2014).
    [Crossref]
  21. X. Li, Z. Zhu, S. Zhao, Y. Li, L. Han, and J. Zhao, “An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control,” Opt. Laser Technol. 56, 362–366 (2014).
    [Crossref]
  22. F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photonics Res. 2(4), B5–B9 (2014).
    [Crossref]
  23. W. Li and J. Yao, “Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 32(20), 3573–3579 (2014).
    [Crossref]

2016 (1)

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization Maintaining Fiber Bragg Grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2016).
[Crossref]

2014 (6)

Y. Zhang, F. Zhang, and S. Pan, “Optical Single Sideband Modulation With Tunable Optical Carrier-to-Sideband Ratio,” IEEE Photonics Technol. Lett. 26(7), 653–655 (2014).
[Crossref]

X. Li, Z. Zhu, S. Zhao, Y. Li, L. Han, and J. Zhao, “An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control,” Opt. Laser Technol. 56, 362–366 (2014).
[Crossref]

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photonics Res. 2(4), B5–B9 (2014).
[Crossref]

W. Li and J. Yao, “Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 32(20), 3573–3579 (2014).
[Crossref]

S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett. 39(13), 3958–3961 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (1)

M. Li and J. Yao, “Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

2010 (1)

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-Based Photonic Generation of High-Frequency Microwave Pulses With Reconfigurable Linear Chirp Control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

2009 (2)

C. Wang and J. Yao, “Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

2008 (2)

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

H. Chi and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal Using a Polarization Modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

2002 (1)

Ashrafi, R.

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-Based Photonic Generation of High-Frequency Microwave Pulses With Reconfigurable Linear Chirp Control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

Azaña, J.

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-Based Photonic Generation of High-Frequency Microwave Pulses With Reconfigurable Linear Chirp Control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic Generation of Phase-Modulated RF Signals for Pulse Compression Techniques in Coherent Radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chi, H.

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization Maintaining Fiber Bragg Grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2016).
[Crossref]

H. Chi and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal Using a Polarization Modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

Coutinho, O. L.

O. L. Coutinho, J. Zhang, and J. Yao, “Photonic Generation of a Linearly Chirped Microwave Waveform With a Large Time-Bandwidth Product Based on Self-Heterodyne Technique,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
[Crossref]

Ge, X.

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photonics Res. 2(4), B5–B9 (2014).
[Crossref]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic Generation of Phase-Modulated RF Signals for Pulse Compression Techniques in Coherent Radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

Han, L.

X. Li, Z. Zhu, S. Zhao, Y. Li, L. Han, and J. Zhao, “An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control,” Opt. Laser Technol. 56, 362–366 (2014).
[Crossref]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

Kong, F.

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic Generation of Phase-Modulated RF Signals for Pulse Compression Techniques in Coherent Radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
[Crossref] [PubMed]

Li, M.

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization Maintaining Fiber Bragg Grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2016).
[Crossref]

M. Li and J. Yao, “Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

Li, W.

Li, X.

X. Li, Z. Zhu, S. Zhao, Y. Li, L. Han, and J. Zhao, “An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control,” Opt. Laser Technol. 56, 362–366 (2014).
[Crossref]

Li, Y.

X. Li, Z. Zhu, S. Zhao, Y. Li, L. Han, and J. Zhao, “An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control,” Opt. Laser Technol. 56, 362–366 (2014).
[Crossref]

Li, Z.

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization Maintaining Fiber Bragg Grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2016).
[Crossref]

Liu, S.

Liu, X. K.

X. K. Liu, W. Pan, X. H. Zou, and S. L. Pan, “Photonic Generation of Chirped Microwave Pulses with Precisely Targeted and Tuned Parameters Using External Modulation,” in Proc. Optical Fiber Communications Conference and Exhibition (2015)
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

McKinney, J. D.

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pan, S.

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photonics Res. 2(4), B5–B9 (2014).
[Crossref]

Y. Zhang, F. Zhang, and S. Pan, “Optical Single Sideband Modulation With Tunable Optical Carrier-to-Sideband Ratio,” IEEE Photonics Technol. Lett. 26(7), 653–655 (2014).
[Crossref]

S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett. 39(13), 3958–3961 (2014).
[Crossref] [PubMed]

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
[Crossref] [PubMed]

Y. Zhang, X. Ye, and S. Pan, “Photonic Generation of Linear Frequency-Modulated Waveform with Improved Time-Bandwidth Product,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
[Crossref]

Pan, S. L.

X. K. Liu, W. Pan, X. H. Zou, and S. L. Pan, “Photonic Generation of Chirped Microwave Pulses with Precisely Targeted and Tuned Parameters Using External Modulation,” in Proc. Optical Fiber Communications Conference and Exhibition (2015)
[Crossref]

Pan, W.

X. K. Liu, W. Pan, X. H. Zou, and S. L. Pan, “Photonic Generation of Chirped Microwave Pulses with Precisely Targeted and Tuned Parameters Using External Modulation,” in Proc. Optical Fiber Communications Conference and Exhibition (2015)
[Crossref]

Park, Y.

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-Based Photonic Generation of High-Frequency Microwave Pulses With Reconfigurable Linear Chirp Control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic Generation of Phase-Modulated RF Signals for Pulse Compression Techniques in Coherent Radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, C.

C. Wang and J. Yao, “Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
[Crossref]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

Wei, Z.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
[Crossref] [PubMed]

Xiao, S. J.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

Yao, J.

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization Maintaining Fiber Bragg Grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2016).
[Crossref]

W. Li and J. Yao, “Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 32(20), 3573–3579 (2014).
[Crossref]

W. Li, F. Kong, and J. Yao, “Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
[Crossref]

M. Li and J. Yao, “Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

C. Wang and J. Yao, “Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
[Crossref]

H. Chi and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal Using a Polarization Modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

W. Zhang and J. Yao, “Photonic Generation of Linearly Chirped Microwave Waveform with a Large Time-Bandwidth Product Using a Silicon-Based On-Chip Spectral Shaper,” in Proc. Int. Topical Meeting Microw. Photon. (2014)

O. L. Coutinho, J. Zhang, and J. Yao, “Photonic Generation of a Linearly Chirped Microwave Waveform With a Large Time-Bandwidth Product Based on Self-Heterodyne Technique,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
[Crossref]

Yao, J. P.

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

Ye, X.

Y. Zhang, X. Ye, and S. Pan, “Photonic Generation of Linear Frequency-Modulated Waveform with Improved Time-Bandwidth Product,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
[Crossref]

Zhang, F.

Y. Zhang, F. Zhang, and S. Pan, “Optical Single Sideband Modulation With Tunable Optical Carrier-to-Sideband Ratio,” IEEE Photonics Technol. Lett. 26(7), 653–655 (2014).
[Crossref]

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photonics Res. 2(4), B5–B9 (2014).
[Crossref]

Zhang, J.

O. L. Coutinho, J. Zhang, and J. Yao, “Photonic Generation of a Linearly Chirped Microwave Waveform With a Large Time-Bandwidth Product Based on Self-Heterodyne Technique,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
[Crossref]

Zhang, W.

W. Zhang and J. Yao, “Photonic Generation of Linearly Chirped Microwave Waveform with a Large Time-Bandwidth Product Using a Silicon-Based On-Chip Spectral Shaper,” in Proc. Int. Topical Meeting Microw. Photon. (2014)

Zhang, X.

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization Maintaining Fiber Bragg Grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, F. Zhang, and S. Pan, “Optical Single Sideband Modulation With Tunable Optical Carrier-to-Sideband Ratio,” IEEE Photonics Technol. Lett. 26(7), 653–655 (2014).
[Crossref]

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
[Crossref] [PubMed]

Y. Zhang, X. Ye, and S. Pan, “Photonic Generation of Linear Frequency-Modulated Waveform with Improved Time-Bandwidth Product,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
[Crossref]

Zhao, J.

X. Li, Z. Zhu, S. Zhao, Y. Li, L. Han, and J. Zhao, “An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control,” Opt. Laser Technol. 56, 362–366 (2014).
[Crossref]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

Zhao, S.

X. Li, Z. Zhu, S. Zhao, Y. Li, L. Han, and J. Zhao, “An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control,” Opt. Laser Technol. 56, 362–366 (2014).
[Crossref]

Zhu, D.

Zhu, Z.

X. Li, Z. Zhu, S. Zhao, Y. Li, L. Han, and J. Zhao, “An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control,” Opt. Laser Technol. 56, 362–366 (2014).
[Crossref]

Zou, X. H.

X. K. Liu, W. Pan, X. H. Zou, and S. L. Pan, “Photonic Generation of Chirped Microwave Pulses with Precisely Targeted and Tuned Parameters Using External Modulation,” in Proc. Optical Fiber Communications Conference and Exhibition (2015)
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (2)

H. Chi and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal Using a Polarization Modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization Maintaining Fiber Bragg Grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Zhang, F. Zhang, and S. Pan, “Optical Single Sideband Modulation With Tunable Optical Carrier-to-Sideband Ratio,” IEEE Photonics Technol. Lett. 26(7), 653–655 (2014).
[Crossref]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-Based Photonic Generation of High-Frequency Microwave Pulses With Reconfigurable Linear Chirp Control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

M. Li and J. Yao, “Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2009).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

X. Li, Z. Zhu, S. Zhao, Y. Li, L. Han, and J. Zhao, “An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control,” Opt. Laser Technol. 56, 362–366 (2014).
[Crossref]

Opt. Lett. (3)

Photonics Res. (1)

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photonics Res. 2(4), B5–B9 (2014).
[Crossref]

Other (6)

M. I. Skolnic, Introduction to Radar (McGraw-Hill Press, New York, USA, 1962)

X. K. Liu, W. Pan, X. H. Zou, and S. L. Pan, “Photonic Generation of Chirped Microwave Pulses with Precisely Targeted and Tuned Parameters Using External Modulation,” in Proc. Optical Fiber Communications Conference and Exhibition (2015)
[Crossref]

Y. Zhang, F. Zhang, and S. Pan, “Frequency-Doubled and Phase-Coded RF Signal Generation Based on Orthogonally Polarized Carrier-suppressed Double Sideband Modulation,” Proc. Asia Communications and Photonics Conference, OSA Technical Digest(online), paper AF3A.2 (2014)
[Crossref]

Y. Zhang, X. Ye, and S. Pan, “Photonic Generation of Linear Frequency-Modulated Waveform with Improved Time-Bandwidth Product,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
[Crossref]

W. Zhang and J. Yao, “Photonic Generation of Linearly Chirped Microwave Waveform with a Large Time-Bandwidth Product Using a Silicon-Based On-Chip Spectral Shaper,” in Proc. Int. Topical Meeting Microw. Photon. (2014)

O. L. Coutinho, J. Zhang, and J. Yao, “Photonic Generation of a Linearly Chirped Microwave Waveform With a Large Time-Bandwidth Product Based on Self-Heterodyne Technique,” in Proc. Int. Topical Meeting Microw. Photon. (2015)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed chirped mm-wave pulse generation. LO, local oscillator; LD, laser diode; DPMZM, dual-parallel Mach-Zehnder modulator; PBC, polarization beam combiner; OF, optical filter; PC, polarization controller; PolM, polarization modulator; OS, optical switch; PBS, polarization beam splitter; BPD, balanced photodetector.
Fig. 2
Fig. 2 Optical spectra from (a) port 1 and (b) port 2 of dual-output DPMZM.
Fig. 3
Fig. 3 Electrical spectra for the signals generated by (a) single-end and (b) balanced detection.
Fig. 4
Fig. 4 Generated pulse waveforms (a) full time duration (b) zoom-in with time span of 1 to 1.5 ns.
Fig. 5
Fig. 5 Instantaneous frequency of the generated pulse.
Fig. 6
Fig. 6 Auto-correlation function of the generated pulse.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ E 1 ( t ) E 2 ( t ) ]=[ 1μ j μ j μ 1μ ][ E M1 ( t ) E M2 ( t ) ] E in ( t ) J 0 ( m )exp( j π 4 )[ 1 1 ]+ 2 E in ( t ) J 2 ( m )[ exp( j2ωt ) exp( j2ωt+j π 2 ) ]
E p ( t ) E in ( t ) J 2 ( m ) { x exp[ j2ωtjβs(t) ]+ y exp[ j2ωt+j π 2 +jβs(t) ] }
E out1 E in ( t ) J 2 ( m ){ exp[ j2ωtjβs(t) ]+exp[ j2ωt+j π 2 +jβs(t) ] } E out2 E in ( t ) J 2 ( m ){ exp[ j2ωtjβs(t) ]exp[ j2ωt+j π 2 +jβs(t) ] } TtT+τ
i( t ) E in 2 ( t ) J 2 2 ( m )cos[ 4ωt+ π 2 +2 β τ 2 (tT) 2 ] TtT+τ

Metrics