Abstract

Photoacoustic/photothermal spectroscopy is an established technique for trace detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity microphone or a piezo sensor coupled with a lock-in amplifier, limiting the technique to applications in a laboratory environment. Due to the aforementioned requirements, traditionally this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms (membrane, powder and liquid) were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) based on the Mach-Zehnder interferometer was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL’s wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment demonstrated that the LDV is a capable sensor for applications in photoacoustic/photothermal spectroscopy, with potential to enable the detection of chemicals in open environment at safe standoff distance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone

Xing Chen, Dingkai Guo, Fow-Sen Choa, Chen-Chia Wang, Sudhir Trivedi, A. Peter Snyder, Guoyun Ru, and Jenyu Fan
Appl. Opt. 52(12) 2626-2632 (2013)

Quantum cascade laser based standoff photoacoustic chemical detection

Xing Chen, Liwei Cheng, Dingkai Guo, Yordan Kostov, and Fow-Sen Choa
Opt. Express 19(21) 20251-20257 (2011)

Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering

Haowen Li, D. Ahmasi Harris, Bingwei Xu, Paul J. Wrzesinski, Vadim V. Lozovoy, and Marcos Dantus
Appl. Opt. 48(4) B17-B22 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
    [Crossref]
  2. F. A. McDonald and G. C. Westsel., “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49(4), 2313–2322 (1978).
    [Crossref]
  3. M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83 (1986).
    [Crossref]
  4. X. Chen, L. Cheng, D. Guo, Y. Kostov, and F. S. Choa, “Quantum cascade laser based standoff photoacoustic chemical detection,” Opt. Express 19(21), 20251–20257 (2011).
    [Crossref] [PubMed]
  5. X. Chen, D. Guo, F. S. Choa, C. C. Wang, S. Trivedi, A. P. Snyder, G. Ru, and J. Fan, “Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone,” Appl. Opt. 52(12), 2626–2632 (2013).
    [Crossref] [PubMed]
  6. J. S. Li, B. Yu, H. Fischer, W. Chen, and A. P. Yalin, “Contributed Review: Quantum cascade laser based photoacoustic detection of explosives,” Rev. Sci. Instrum. 86(3), 031501 (2015).
    [Crossref] [PubMed]
  7. I. Suemune, H. Yamamoto, and M. Yamanishi, “Noncontact photoacoustic measurements of semiconductors with Michelson interferometry,” J. Appl. Phys. 58(1), 615–617 (1985).
    [Crossref]
  8. P. S. Cho, R. M. Jones, T. Shuman, D. Scoglietti, and G. Harston, “Investigation of standoff explosives detection via photothermal/photoacoustic interferometry,” Proc. SPIE 8018, 80181T (2011).
    [Crossref]
  9. P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
    [Crossref]
  10. Y. Fu, M. Guo, and P. B. Phua, “Multipoint laser Doppler vibrometry with single detector: principles, implementations, and signal analyses,” Appl. Opt. 50(10), 1280–1288 (2011).
    [Crossref] [PubMed]
  11. L. S. Marcus, E. L. Holthoff, J. F. Schill, and P. M. Pellegrino, “Photoacoustic chemical sensing: ultracompact sources and standoff detection,” Proc. SPIE 9073, 907307 (2014).
    [Crossref]
  12. Y. Fu, Q. Hu, and H. Liu, “Standoff photoacoustic sensing of tracing chemicals by laser Doppler vibrometer,” Proc. SPIE 9824, 98240O (2016).
  13. J. P. Monchalin, L. Bertrand, G. Rousset, and F. Lepoutre, “Photoacoustic spectroscopy of thick powdered or porous samples at low frequency,” J. Appl. Phys. 56(1), 190–210 (1984).
    [Crossref]
  14. K. Y. Wong, “Signal enhancement in photoacoustic spectroscopy on powder samples,” J. Appl. Phys. 49(6), 3033–3035 (1978).
    [Crossref]

2016 (1)

Y. Fu, Q. Hu, and H. Liu, “Standoff photoacoustic sensing of tracing chemicals by laser Doppler vibrometer,” Proc. SPIE 9824, 98240O (2016).

2015 (1)

J. S. Li, B. Yu, H. Fischer, W. Chen, and A. P. Yalin, “Contributed Review: Quantum cascade laser based photoacoustic detection of explosives,” Rev. Sci. Instrum. 86(3), 031501 (2015).
[Crossref] [PubMed]

2014 (1)

L. S. Marcus, E. L. Holthoff, J. F. Schill, and P. M. Pellegrino, “Photoacoustic chemical sensing: ultracompact sources and standoff detection,” Proc. SPIE 9073, 907307 (2014).
[Crossref]

2013 (1)

2011 (3)

2006 (1)

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

1986 (2)

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83 (1986).
[Crossref]

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[Crossref]

1985 (1)

I. Suemune, H. Yamamoto, and M. Yamanishi, “Noncontact photoacoustic measurements of semiconductors with Michelson interferometry,” J. Appl. Phys. 58(1), 615–617 (1985).
[Crossref]

1984 (1)

J. P. Monchalin, L. Bertrand, G. Rousset, and F. Lepoutre, “Photoacoustic spectroscopy of thick powdered or porous samples at low frequency,” J. Appl. Phys. 56(1), 190–210 (1984).
[Crossref]

1978 (2)

K. Y. Wong, “Signal enhancement in photoacoustic spectroscopy on powder samples,” J. Appl. Phys. 49(6), 3033–3035 (1978).
[Crossref]

F. A. McDonald and G. C. Westsel., “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49(4), 2313–2322 (1978).
[Crossref]

Bertrand, L.

J. P. Monchalin, L. Bertrand, G. Rousset, and F. Lepoutre, “Photoacoustic spectroscopy of thick powdered or porous samples at low frequency,” J. Appl. Phys. 56(1), 190–210 (1984).
[Crossref]

Castellini, P.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

Chen, W.

J. S. Li, B. Yu, H. Fischer, W. Chen, and A. P. Yalin, “Contributed Review: Quantum cascade laser based photoacoustic detection of explosives,” Rev. Sci. Instrum. 86(3), 031501 (2015).
[Crossref] [PubMed]

Chen, X.

Cheng, L.

Cho, P. S.

P. S. Cho, R. M. Jones, T. Shuman, D. Scoglietti, and G. Harston, “Investigation of standoff explosives detection via photothermal/photoacoustic interferometry,” Proc. SPIE 8018, 80181T (2011).
[Crossref]

Choa, F. S.

Fan, J.

Fischer, H.

J. S. Li, B. Yu, H. Fischer, W. Chen, and A. P. Yalin, “Contributed Review: Quantum cascade laser based photoacoustic detection of explosives,” Rev. Sci. Instrum. 86(3), 031501 (2015).
[Crossref] [PubMed]

Fu, Y.

Y. Fu, Q. Hu, and H. Liu, “Standoff photoacoustic sensing of tracing chemicals by laser Doppler vibrometer,” Proc. SPIE 9824, 98240O (2016).

Y. Fu, M. Guo, and P. B. Phua, “Multipoint laser Doppler vibrometry with single detector: principles, implementations, and signal analyses,” Appl. Opt. 50(10), 1280–1288 (2011).
[Crossref] [PubMed]

Guo, D.

Guo, M.

Harston, G.

P. S. Cho, R. M. Jones, T. Shuman, D. Scoglietti, and G. Harston, “Investigation of standoff explosives detection via photothermal/photoacoustic interferometry,” Proc. SPIE 8018, 80181T (2011).
[Crossref]

Holthoff, E. L.

L. S. Marcus, E. L. Holthoff, J. F. Schill, and P. M. Pellegrino, “Photoacoustic chemical sensing: ultracompact sources and standoff detection,” Proc. SPIE 9073, 907307 (2014).
[Crossref]

Hu, Q.

Y. Fu, Q. Hu, and H. Liu, “Standoff photoacoustic sensing of tracing chemicals by laser Doppler vibrometer,” Proc. SPIE 9824, 98240O (2016).

Jones, R. M.

P. S. Cho, R. M. Jones, T. Shuman, D. Scoglietti, and G. Harston, “Investigation of standoff explosives detection via photothermal/photoacoustic interferometry,” Proc. SPIE 8018, 80181T (2011).
[Crossref]

Kostov, Y.

Lepoutre, F.

J. P. Monchalin, L. Bertrand, G. Rousset, and F. Lepoutre, “Photoacoustic spectroscopy of thick powdered or porous samples at low frequency,” J. Appl. Phys. 56(1), 190–210 (1984).
[Crossref]

Li, J. S.

J. S. Li, B. Yu, H. Fischer, W. Chen, and A. P. Yalin, “Contributed Review: Quantum cascade laser based photoacoustic detection of explosives,” Rev. Sci. Instrum. 86(3), 031501 (2015).
[Crossref] [PubMed]

Liu, H.

Y. Fu, Q. Hu, and H. Liu, “Standoff photoacoustic sensing of tracing chemicals by laser Doppler vibrometer,” Proc. SPIE 9824, 98240O (2016).

Marcus, L. S.

L. S. Marcus, E. L. Holthoff, J. F. Schill, and P. M. Pellegrino, “Photoacoustic chemical sensing: ultracompact sources and standoff detection,” Proc. SPIE 9073, 907307 (2014).
[Crossref]

Martarelli, M.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

McDonald, F. A.

F. A. McDonald and G. C. Westsel., “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49(4), 2313–2322 (1978).
[Crossref]

Monchalin, J. P.

J. P. Monchalin, L. Bertrand, G. Rousset, and F. Lepoutre, “Photoacoustic spectroscopy of thick powdered or porous samples at low frequency,” J. Appl. Phys. 56(1), 190–210 (1984).
[Crossref]

Pellegrino, P. M.

L. S. Marcus, E. L. Holthoff, J. F. Schill, and P. M. Pellegrino, “Photoacoustic chemical sensing: ultracompact sources and standoff detection,” Proc. SPIE 9073, 907307 (2014).
[Crossref]

Phua, P. B.

Rousset, G.

J. P. Monchalin, L. Bertrand, G. Rousset, and F. Lepoutre, “Photoacoustic spectroscopy of thick powdered or porous samples at low frequency,” J. Appl. Phys. 56(1), 190–210 (1984).
[Crossref]

Ru, G.

Schill, J. F.

L. S. Marcus, E. L. Holthoff, J. F. Schill, and P. M. Pellegrino, “Photoacoustic chemical sensing: ultracompact sources and standoff detection,” Proc. SPIE 9073, 907307 (2014).
[Crossref]

Scoglietti, D.

P. S. Cho, R. M. Jones, T. Shuman, D. Scoglietti, and G. Harston, “Investigation of standoff explosives detection via photothermal/photoacoustic interferometry,” Proc. SPIE 8018, 80181T (2011).
[Crossref]

Shuman, T.

P. S. Cho, R. M. Jones, T. Shuman, D. Scoglietti, and G. Harston, “Investigation of standoff explosives detection via photothermal/photoacoustic interferometry,” Proc. SPIE 8018, 80181T (2011).
[Crossref]

Sigrist, M. W.

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83 (1986).
[Crossref]

Snyder, A. P.

Suemune, I.

I. Suemune, H. Yamamoto, and M. Yamanishi, “Noncontact photoacoustic measurements of semiconductors with Michelson interferometry,” J. Appl. Phys. 58(1), 615–617 (1985).
[Crossref]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[Crossref]

Tomasini, E. P.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

Trivedi, S.

Wang, C. C.

Westsel, G. C.

F. A. McDonald and G. C. Westsel., “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49(4), 2313–2322 (1978).
[Crossref]

Wong, K. Y.

K. Y. Wong, “Signal enhancement in photoacoustic spectroscopy on powder samples,” J. Appl. Phys. 49(6), 3033–3035 (1978).
[Crossref]

Yalin, A. P.

J. S. Li, B. Yu, H. Fischer, W. Chen, and A. P. Yalin, “Contributed Review: Quantum cascade laser based photoacoustic detection of explosives,” Rev. Sci. Instrum. 86(3), 031501 (2015).
[Crossref] [PubMed]

Yamamoto, H.

I. Suemune, H. Yamamoto, and M. Yamanishi, “Noncontact photoacoustic measurements of semiconductors with Michelson interferometry,” J. Appl. Phys. 58(1), 615–617 (1985).
[Crossref]

Yamanishi, M.

I. Suemune, H. Yamamoto, and M. Yamanishi, “Noncontact photoacoustic measurements of semiconductors with Michelson interferometry,” J. Appl. Phys. 58(1), 615–617 (1985).
[Crossref]

Yu, B.

J. S. Li, B. Yu, H. Fischer, W. Chen, and A. P. Yalin, “Contributed Review: Quantum cascade laser based photoacoustic detection of explosives,” Rev. Sci. Instrum. 86(3), 031501 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

J. Appl. Phys. (5)

J. P. Monchalin, L. Bertrand, G. Rousset, and F. Lepoutre, “Photoacoustic spectroscopy of thick powdered or porous samples at low frequency,” J. Appl. Phys. 56(1), 190–210 (1984).
[Crossref]

K. Y. Wong, “Signal enhancement in photoacoustic spectroscopy on powder samples,” J. Appl. Phys. 49(6), 3033–3035 (1978).
[Crossref]

F. A. McDonald and G. C. Westsel., “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49(4), 2313–2322 (1978).
[Crossref]

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83 (1986).
[Crossref]

I. Suemune, H. Yamamoto, and M. Yamanishi, “Noncontact photoacoustic measurements of semiconductors with Michelson interferometry,” J. Appl. Phys. 58(1), 615–617 (1985).
[Crossref]

Mech. Syst. Signal Process. (1)

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

Opt. Express (1)

Proc. SPIE (3)

P. S. Cho, R. M. Jones, T. Shuman, D. Scoglietti, and G. Harston, “Investigation of standoff explosives detection via photothermal/photoacoustic interferometry,” Proc. SPIE 8018, 80181T (2011).
[Crossref]

L. S. Marcus, E. L. Holthoff, J. F. Schill, and P. M. Pellegrino, “Photoacoustic chemical sensing: ultracompact sources and standoff detection,” Proc. SPIE 9073, 907307 (2014).
[Crossref]

Y. Fu, Q. Hu, and H. Liu, “Standoff photoacoustic sensing of tracing chemicals by laser Doppler vibrometer,” Proc. SPIE 9824, 98240O (2016).

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[Crossref]

Rev. Sci. Instrum. (1)

J. S. Li, B. Yu, H. Fischer, W. Chen, and A. P. Yalin, “Contributed Review: Quantum cascade laser based photoacoustic detection of explosives,” Rev. Sci. Instrum. 86(3), 031501 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic layout of experimental setup; (b) CW power distribution of QCL from Block Engineering at different wavelengths; (c) Sample 1, PTFE tape (0.075mm in thickness); (d) Sample 2, deposited sulfamic acid on an aluminum plate.
Fig. 2
Fig. 2 (a) Output CW and pulsed power of MIRcat QCL from Daylight Solutions; (b) Schematic layout of excitation and probe laser on liquid chemicals (Acetone).
Fig. 3
Fig. 3 (a) IR absorbance spectrum of PTFE from NICODOM IR libraries; (b) Normalized vibration amplitude obtained by LDV at different wave numbers.
Fig. 4
Fig. 4 (a) IR absorbance spectrum of sulfamic acid from NICODOM IR libraries; (b) Normalized vibration amplitude on sulfamic acid with aluminum substrate obtained by LDV at different wave numbers.
Fig. 5
Fig. 5 (a) IR absorbance spectrum of Acetone measured by PerkinElmer Frontier FT-IR/NIR spectrometer; (b) Normalized vibration amplitude on acetone at 5°C obtained by LDV at different wave numbers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δϕ 4π λ LDV ( Δ n a μ a n a ΔL ) 4πΔT λ LDV [ ( dn dT ) a μ a n a μ s β s ],

Metrics